dc.contributor.author | Hoikkala, Ville | |
dc.contributor.author | Ravantti, Janne | |
dc.contributor.author | Díez-Villaseñor, César | |
dc.contributor.author | Tiirola, Marja | |
dc.contributor.author | Conrad, Rachel A. | |
dc.contributor.author | McBride, Mark J. | |
dc.contributor.author | Moineau, Sylvain | |
dc.contributor.author | Sundberg, Lotta-Riina | |
dc.date.accessioned | 2021-04-01T11:37:37Z | |
dc.date.available | 2021-04-01T11:37:37Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Hoikkala, V., Ravantti, J., Díez-Villaseñor, C., Tiirola, M., Conrad, R. A., McBride, M. J., Moineau, S., & Sundberg, L.-R. (2021). Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System. <i>Mbio</i>, <i>12</i>(2), Article e03338-20. <a href="https://doi.org/10.1128/mbio.03338-20" target="_blank">https://doi.org/10.1128/mbio.03338-20</a> | |
dc.identifier.other | CONVID_52643771 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/74936 | |
dc.description.abstract | CRISPR-Cas immune systems adapt to new threats by acquiring new spacers from invading nucleic acids such as phage genomes. However, some CRISPR-Cas loci lack genes necessary for spacer acquisition despite variation in spacer content between microbial strains. It has been suggested that such loci may use acquisition machinery from cooccurring CRISPR-Cas systems within the same strain. Here, following infection by a virulent phage with a double-stranded DNA (dsDNA) genome, we observed spacer acquisition in the native host Flavobacterium columnare that carries an acquisition-deficient CRISPR-Cas subtype VI-B system and a complete subtype II-C system. We show that the VI-B locus acquires spacers from both the bacterial and phage genomes, while the newly acquired II-C spacers mainly target the viral genome. Both loci preferably target the terminal end of the phage genome, with priming-like patterns around a preexisting II-C protospacer. Through gene deletion, we show that the RNA-cleaving VI-B system acquires spacers in trans using acquisition machinery from the DNA-cleaving II-C system. Our observations support the concept of cross talk between CRISPR-Cas systems and raise further questions regarding the plasticity of adaptation modules. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Society for Microbiology | |
dc.relation.ispartofseries | Mbio | |
dc.rights | CC BY 4.0 | |
dc.subject.other | CRISPR | |
dc.subject.other | adaptation | |
dc.subject.other | bacteriophages | |
dc.subject.other | coevolution | |
dc.subject.other | spacer acquisition | |
dc.subject.other | type II | |
dc.subject.other | type VI | |
dc.title | Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202104012262 | |
dc.contributor.laitos | Bio- ja ympäristötieteiden laitos | fi |
dc.contributor.laitos | Department of Biological and Environmental Science | en |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Ympäristötiede | fi |
dc.contributor.oppiaine | Solu- ja molekyylibiologia | fi |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.contributor.oppiaine | Environmental Science | en |
dc.contributor.oppiaine | Cell and Molecular Biology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2161-2129 | |
dc.relation.numberinseries | 2 | |
dc.relation.volume | 12 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2021 Hoikkala et al. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 314939 | |
dc.subject.yso | bakteriofagit | |
dc.subject.yso | DNA | |
dc.subject.yso | RNA | |
dc.subject.yso | evoluutio | |
dc.subject.yso | immuunijärjestelmä | |
dc.subject.yso | bakteerit | |
dc.subject.yso | horisontaalinen geeninsiirto | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25303 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7690 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7689 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8278 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16041 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1749 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p29551 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1128/mbio.03338-20 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This work received funding from the Kone Foundation, the Jane and Aatos Erkko Foundation, and the Academy of Finland (grant no. 314939). This work resulted from the BONUS Flavophage project supported by BONUS (Art 185), funded jointly by the European Union and the Academy of Finland, and was financially supported, in part, by U.S. Department of Agriculture-ARS CRIS project 5090-31320-004-00D, cooperative agreement no. 5090-31320-004-03S, to M.J.M. S.M. acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (Discovery program). S.M. holds a T1 Canada Research Chair in Bacteriophages. | |
dc.type.okm | A1 | |