Näytä suppeat kuvailutiedot

dc.contributor.authorHoikkala, Ville
dc.contributor.authorRavantti, Janne
dc.contributor.authorDíez-Villaseñor, César
dc.contributor.authorTiirola, Marja
dc.contributor.authorConrad, Rachel A.
dc.contributor.authorMcBride, Mark J.
dc.contributor.authorMoineau, Sylvain
dc.contributor.authorSundberg, Lotta-Riina
dc.date.accessioned2021-04-01T11:37:37Z
dc.date.available2021-04-01T11:37:37Z
dc.date.issued2021
dc.identifier.citationHoikkala, V., Ravantti, J., Díez-Villaseñor, C., Tiirola, M., Conrad, R. A., McBride, M. J., Moineau, S., & Sundberg, L.-R. (2021). Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System. <i>Mbio</i>, <i>12</i>(2), Article e03338-20. <a href="https://doi.org/10.1128/mbio.03338-20" target="_blank">https://doi.org/10.1128/mbio.03338-20</a>
dc.identifier.otherCONVID_52643771
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74936
dc.description.abstractCRISPR-Cas immune systems adapt to new threats by acquiring new spacers from invading nucleic acids such as phage genomes. However, some CRISPR-Cas loci lack genes necessary for spacer acquisition despite variation in spacer content between microbial strains. It has been suggested that such loci may use acquisition machinery from cooccurring CRISPR-Cas systems within the same strain. Here, following infection by a virulent phage with a double-stranded DNA (dsDNA) genome, we observed spacer acquisition in the native host Flavobacterium columnare that carries an acquisition-deficient CRISPR-Cas subtype VI-B system and a complete subtype II-C system. We show that the VI-B locus acquires spacers from both the bacterial and phage genomes, while the newly acquired II-C spacers mainly target the viral genome. Both loci preferably target the terminal end of the phage genome, with priming-like patterns around a preexisting II-C protospacer. Through gene deletion, we show that the RNA-cleaving VI-B system acquires spacers in trans using acquisition machinery from the DNA-cleaving II-C system. Our observations support the concept of cross talk between CRISPR-Cas systems and raise further questions regarding the plasticity of adaptation modules.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Society for Microbiology
dc.relation.ispartofseriesMbio
dc.rightsCC BY 4.0
dc.subject.otherCRISPR
dc.subject.otheradaptation
dc.subject.otherbacteriophages
dc.subject.othercoevolution
dc.subject.otherspacer acquisition
dc.subject.othertype II
dc.subject.othertype VI
dc.titleCooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202104012262
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineYmpäristötiedefi
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiaineEnvironmental Scienceen
dc.contributor.oppiaineCell and Molecular Biologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2161-2129
dc.relation.numberinseries2
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 Hoikkala et al.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber314939
dc.subject.ysobakteriofagit
dc.subject.ysoDNA
dc.subject.ysoRNA
dc.subject.ysoevoluutio
dc.subject.ysoimmuunijärjestelmä
dc.subject.ysobakteerit
dc.subject.ysohorisontaalinen geeninsiirto
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p25303
jyx.subject.urihttp://www.yso.fi/onto/yso/p7690
jyx.subject.urihttp://www.yso.fi/onto/yso/p7689
jyx.subject.urihttp://www.yso.fi/onto/yso/p8278
jyx.subject.urihttp://www.yso.fi/onto/yso/p16041
jyx.subject.urihttp://www.yso.fi/onto/yso/p1749
jyx.subject.urihttp://www.yso.fi/onto/yso/p29551
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1128/mbio.03338-20
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work received funding from the Kone Foundation, the Jane and Aatos Erkko Foundation, and the Academy of Finland (grant no. 314939). This work resulted from the BONUS Flavophage project supported by BONUS (Art 185), funded jointly by the European Union and the Academy of Finland, and was financially supported, in part, by U.S. Department of Agriculture-ARS CRIS project 5090-31320-004-00D, cooperative agreement no. 5090-31320-004-03S, to M.J.M. S.M. acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (Discovery program). S.M. holds a T1 Canada Research Chair in Bacteriophages.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0