Real-time time-dependent density functional theory implementation of electronic circular dichroism applied to nanoscale metal–organic clusters
dc.contributor.author | Makkonen, Esko | |
dc.contributor.author | Rossi, Tuomas P. | |
dc.contributor.author | Larsen, Ask Hjorth | |
dc.contributor.author | Lopez-Acevedo, Olga | |
dc.contributor.author | Rinke, Patrick | |
dc.contributor.author | Kuisma, Mikael | |
dc.contributor.author | Chen, Xi | |
dc.date.accessioned | 2021-03-23T05:12:53Z | |
dc.date.available | 2021-03-23T05:12:53Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Makkonen, E., Rossi, T. P., Larsen, A. H., Lopez-Acevedo, O., Rinke, P., Kuisma, M., & Chen, X. (2021). Real-time time-dependent density functional theory implementation of electronic circular dichroism applied to nanoscale metal–organic clusters. <i>Journal of Chemical Physics</i>, <i>154</i>(11), Article 114102. <a href="https://doi.org/10.1063/5.0038904" target="_blank">https://doi.org/10.1063/5.0038904</a> | |
dc.identifier.other | CONVID_51983129 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/74717 | |
dc.description.abstract | Electronic circular dichroism (ECD) is a powerful spectroscopy method for investigating chiral properties at the molecular level. ECD calculations with the commonly used linear-response time-dependent density functional theory (LR-TDDFT) framework can be prohibitively costly for large systems. To alleviate this problem, we present here an ECD implementation within the projector augmented-wave method in a real-time-propagation TDDFT framework in the open-source GPAW code. Our implementation supports both local atomic basis sets and real-space finite-difference representations of wave functions. We benchmark our implementation against an existing LR-TDDFT implementation in GPAW for small chiral molecules. We then demonstrate the efficiency of our local atomic basis set implementation for a large hybrid nanocluster and discuss the chiroptical properties of the cluster. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | AIP Publishing | |
dc.relation.ispartofseries | Journal of Chemical Physics | |
dc.rights | CC BY 4.0 | |
dc.title | Real-time time-dependent density functional theory implementation of electronic circular dichroism applied to nanoscale metal–organic clusters | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202103232052 | |
dc.contributor.laitos | Bio- ja ympäristötieteiden laitos | fi |
dc.contributor.laitos | Department of Biological and Environmental Science | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0021-9606 | |
dc.relation.numberinseries | 11 | |
dc.relation.volume | 154 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2021 Author(s). | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 295602 | |
dc.subject.yso | spektroskopia | |
dc.subject.yso | nanohiukkaset | |
dc.subject.yso | tiheysfunktionaaliteoria | |
dc.subject.yso | optiset ominaisuudet | |
dc.subject.yso | organometalliyhdisteet | |
dc.subject.yso | magneettiset ominaisuudet | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10176 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p23451 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28852 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25870 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28123 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p597 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.dataset | http://doi.org/10.5281/zenodo.4300008 | |
dc.relation.doi | 10.1063/5.0038904 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundinginformation | This work was supported by the Academy of Finland under Grant Nos. 279240, 295602, 308647, 312556, 314298, and 332429. T.P.R. also acknowledges support from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Grant Agreement No. 838996. We acknowledge computational resources provided by the CSC–IT Center for Science (Finland), the Aalto Science-IT project, and the Swedish National Infrastructure for Computing (SNIC) at PDC (Stockholm). | |
dc.type.okm | A1 |