Feasibility and physics potential of detecting 8B solar neutrinos at JUNO
JUNO Collaboration. (2021). Feasibility and physics potential of detecting 8B solar neutrinos at JUNO. Chinese Physics C, 45(2), Article 023004. https://doi.org/10.1088/1674-1137/abd92a
Julkaistu sarjassa
Chinese Physics CTekijät
Päivämäärä
2021Oppiaine
FysiikkaYdin- ja kiihdytinfysiikan huippuyksikköPhysicsCentre of Excellence in Nuclear and Accelerator Based PhysicsTekijänoikeudet
© 2021 Chinese Physical Society
The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for B-8 solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive background U-238 and Th-232 in the liquid scintillator can be controlled to 10(-17) g/g. With ten years of data acquisition, approximately 60,000 signal and 30,000 background events are expected. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter, which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework. If Delta m(21)(2) = 4.8 x 10(-5) (7.5 x 10(-5)) eV(2), JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3 sigma(2 sigma) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moreover, JUNO can simultaneously measure Delta m(21)(2) using B-8 solar neutrinos to a precision of 20% or better, depending on the central value, and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of Delta m(21)(2) reported by solar neutrino experiments and the KamLAND experiment.
...
Julkaisija
IOP PublishingISSN Hae Julkaisufoorumista
1674-1137Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/51631075
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported by the Chinese Academy of Sciences, the National Key R&D Program of China, the CAS Center for Excellence in Particle Physics, the Joint Large-Scale Scientific Facility Funds of the NSFC and CAS, Wuyi University, and the Tsung-Dao Lee Institute of Shanghai Jiao Tong University in China, the Institut National de Physique Nucléaire et de Physique de Particules (IN2P3) in France, the Istituto Nazionale di Fisica Nucleare (INFN) in Italy, the Fond de la Recherche Scientifique (F.R.S-FNRS) and FWO under the "Excellence of Science – EOS" in Belgium, the Conselho Nacional de Desenvolvimento Científico e Tecnològico in Brazil, the Agencia Nacional de Investigación y Desarrollo in Chile, the Charles University Research Centre and the Ministry of Education, Youth, and Sports in Czech Republic, the Deutsche Forschungsgemeinschaft (DFG), the Helmholtz Association, and the Cluster of Excellence PRISMA+ in Germany, the Joint Institute of Nuclear Research (JINR), Lomonosov Moscow State University, and Russian Foundation for Basic Research (RFBR) in Russia, the MOST and MOE in Taiwan, the Chulalongkorn University and Suranaree University of Technology in Thailand, and the University of California at Irvine in USA ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Long-baseline neutrino oscillation physics potential of the DUNE experiment
DUNE Collaboration (Springer, 2020)The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and ... -
Sub-percent precision measurement of neutrino oscillation parameters with JUNO
JUNO Collaboration (IOP Publishing, 2022) -
Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report
DUNE Collaboration (MDPI AG, 2021)The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. ... -
Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment
DUNE Collaboration (American Physical Society (APS), 2022)The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE’s sensitivity to observe charge-parity violation ... -
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC
DUNE Collaboration (Springer Science and Business Media LLC, 2022)DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 × 6 × 6 m3 liquid argon time-projection-chamber (LArTPC) ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.