dc.contributor.author | Koszorús, Á. | |
dc.contributor.author | Yang, X. F. | |
dc.contributor.author | Jiang, W. G. | |
dc.contributor.author | Novario, S. J. | |
dc.contributor.author | Bai, S. W. | |
dc.contributor.author | Billowes, J. | |
dc.contributor.author | Binnersley, C. L. | |
dc.contributor.author | Bissell, M. L. | |
dc.contributor.author | Cocolios, T. E. | |
dc.contributor.author | Cooper, B. S. | |
dc.contributor.author | de Groote, R. P. | |
dc.contributor.author | Ekström, A. | |
dc.contributor.author | Flanagan, K. T. | |
dc.contributor.author | Forssén, C. | |
dc.contributor.author | Franchoo, S. | |
dc.contributor.author | Ruiz, R. F. Garcia | |
dc.contributor.author | Gustafsson, F. P. | |
dc.contributor.author | Hagen, G. | |
dc.contributor.author | Jansen, G. R. | |
dc.contributor.author | Kanellakopoulos, A. | |
dc.contributor.author | Kortelainen, M. | |
dc.contributor.author | Nazarewicz, W. | |
dc.contributor.author | Neyens, G. | |
dc.contributor.author | Papenbrock, T. | |
dc.contributor.author | Reinhard, P.-G. | |
dc.contributor.author | Ricketts, C. M. | |
dc.contributor.author | Sahoo, B. K. | |
dc.contributor.author | Vernon, A. R. | |
dc.contributor.author | Wilkins, S. G. | |
dc.date.accessioned | 2021-02-05T09:09:47Z | |
dc.date.available | 2021-02-05T09:09:47Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Koszorús, Á., Yang, X. F., Jiang, W. G., Novario, S. J., Bai, S. W., Billowes, J., Binnersley, C. L., Bissell, M. L., Cocolios, T. E., Cooper, B. S., de Groote, R. P., Ekström, A., Flanagan, K. T., Forssén, C., Franchoo, S., Ruiz, R. F. G., Gustafsson, F. P., Hagen, G., Jansen, G. R., . . . Wilkins, S. G. (2021). Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32. <i>Nature Physics</i>, <i>17</i>(4), 439-443. <a href="https://doi.org/10.1038/s41567-020-01136-5" target="_blank">https://doi.org/10.1038/s41567-020-01136-5</a> | |
dc.identifier.other | CONVID_51301134 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/74004 | |
dc.description.abstract | Nuclear charge radii are sensitive probes of different aspects of the nucleon–nucleon interaction and the bulk properties of nuclear matter, providing a stringent test and challenge for nuclear theory. Experimental evidence suggested a new magic neutron number at N = 32 (refs. 1,2,3) in the calcium region, whereas the unexpectedly large increases in the charge radii4,5 open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with β-decay detection, we were able to extend charge radii measurements of potassium isotopes beyond N = 32. Here we provide a charge radius measurement of 52K. It does not show a signature of magic behaviour at N = 32 in potassium. The results are interpreted with two state-of-the-art nuclear theories. The coupled cluster theory reproduces the odd–even variations in charge radii but not the notable increase beyond N = 28. This rise is well captured by Fayans nuclear density functional theory, which, however, overestimates the odd–even staggering effect in charge radii. These findings highlight our limited understanding of the nuclear size of neutron-rich systems, and expose problems that are present in some of the best current models of nuclear theory. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Nature Publishing Group | |
dc.relation.ispartofseries | Nature Physics | |
dc.rights | CC BY 4.0 | |
dc.title | Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32 | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202102051448 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 439-443 | |
dc.relation.issn | 1745-2473 | |
dc.relation.numberinseries | 4 | |
dc.relation.volume | 17 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Authors, 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | ydinfysiikka | |
dc.subject.yso | kalium | |
dc.subject.yso | isotoopit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14759 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11555 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6387 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1038/s41567-020-01136-5 | |
jyx.fundinginformation | We acknowledge the support of the ISOLDE collaboration and technical teams. This work was supported in part by the National Key R&D Program of China (contract number 2018YFA0404403); the National Natural Science Foundation of China (grant number 11875073); the BriX Research Program number P7/12, FWO-Vlaanderen (Belgium), GOA 15/010 from KU Leuven; ERC Consolidator grant number 648381 (FNPMLS); the STFC consolidated grant numbers ST/L005794/1, ST/L005786/1, ST/P004423/1 and Ernest Rutherford grant number ST/L002868/1; the EU Horizon 2020 research and innovation programme through ENSAR2 (grant number 654002); the US Department of Energy, Office of Science, Office of Nuclear Physics under grant numbers DE-SC0021176, DE-00249237, DE-FG02-96ER40963 and DE-SC0018223 (SciDAC-4 NUCLEI collaboration). This work received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 758027), the Swedish Research Council grant number 2017-04234 and the Swedish Foundation for International Cooperation in Research and Higher Education (STINT) grant number IG2012-5158. B.K.S. acknowledges the use of the Vikram-100 HPC cluster of the Physical Research Laboratory, Ahmedabad, for atomic calculations. Computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) programme. This research used resources of the Oak Ridge Leadership Computing Facility and of the Compute and Data Environment for Science (CADES), located at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under contract number DE-AC05-00OR22725. | |
dc.type.okm | A1 | |