University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Estimating the distribution of anthropogenic asbestos using random forest algorithm

Icon
1.6 Mb

Authors
Hietaranta, Mikko
Date
2020
Discipline
Ympäristötiede ja -teknologia (maisteriohjelma)Environmental science and technology
Access restrictions
The author has not given permission to make the work publicly available electronically. Therefore the material can be read only at the archival workstation at Jyväskylä University Library (https://kirjasto.jyu.fi/collections/archival-workstation).
You can request a copy of this thesis here
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

 
Tässä tutkimuksessa selvitettiin koneoppimisella tapahtuvan datakäsittelyn käyttökelpoisuutta ja sen tuottamia tuloksia asbestin alueellisesta jakautumisesta Suomessa. Analysoitava data perustui rakennusten valmistumisvuoteen, käyttötarkoitukseen, tunnettuihin käytössä olleisiin asbestituotteisiin ja näiden jakautumiseen kuntien välillä. Analyysi tehtiin random forest-algoritmilla, jonka todettiin oppivan hyvin ennustamaan aineistoa, jonka suureiden ja tutkittavan asian välillä on selkeitä korrelaatioita. Algoritmi onnistui arvioimaan asbestin määrää eri kuntien välillä, ja määrien huomattiin korreloivan rakennusten valmistumisajan kanssa, etenkin 1960-70 luvuilla, jolloin sitä käytettiin myös eniten. Erilliset asuinrakennukset edustivat suurinta osaa datasta, eikä tämän vuoksi kaikista rakennustyypeistä löydetty korrelaatiota asbestin kunnallisen määrän kanssa. Tutkimuksen suurimmat ongelmat olivat tarkan, tilastoidun datan poissaolo asbestin käyttömääristä ja -kohteista, mikä loi epävarmuustekijöitä tuloksiin. Tästä huolimatta data käsiteltiin ja arvioitiin tarkkojen rakennustietokantojen avulla. ...
 
In this study machine learning was used to determine its value for evaluating asbestos amounts in Finland based on structure type and age data, known asbestos-based products, and their distribution between municipalities. The results derived from random forest algorithm showed that with a large number of attributes, that have a high correlation with the examined question the random forest algorithm was able to determine estimations of asbestos use in each municipality. Asbestos amounts were noticed to correlate with built area of all buildings dating from 1921 to 1989. There was significant bias towards the building age, since most of the asbestos was used during 1960-70. Since small residential buildings dominated the data other building types were not found as significant correlators when estimating municipal-scale asbestos use. The main problems of this study were the absence of accurate statistics of asbestos use in construction materials, which created uncertainties with the data. This uncertainty was accepted and data was imputed and evaluated with accurate statistical building data. ...
 
Keywords
random forest asbesti algoritmit koneoppiminen asbestoosi julkiset rakennukset asbestos algorithms machine learning asbestosis public buildings
URI

http://urn.fi/URN:NBN:fi:jyu-202101201154

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [24532]

Related items

Showing items with similar title or keywords.

  • Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine? 

    Linja, Joakim; Hämäläinen, Joonas; Nieminen, Paavo; Kärkkäinen, Tommi (MDPI AG, 2020)
    Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of ...
  • Multilayer perceptron training with multiobjective memetic optimization 

    Nieminen, Paavo (University of Jyväskylä, 2016)
    Machine learning tasks usually come with several mutually conflicting objectives. One example is the simplicity of the learning device contrasted with the accuracy of its performance after learning. Another common example ...
  • Part-of-speech tagging in written slang 

    Korolainen, Valtteri (2014)
    Erilaiset kieliteknologiasovellukset ovat olleet jo vuosikymmeniä arkipäiväises-sä käytössä. Esimerkiksi ennustava tekstinsyöttö ja automaattinen korjaus ovat olleet käytössä jo vuosikymmeniä. Puheen tunnistus ja kielen ...
  • The Datafication of Hate : Expectations and Challenges in Automated Hate Speech Monitoring 

    Laaksonen, Salla-Maaria; Haapoja, Jesse; Kinnunen, Teemu; Nelimarkka, Matti; Pöyhtäri, Reeta (Frontiers Media, 2020)
    Hate speech has been identified as a pressing problem in society and several automated approaches have been designed to detect and prevent it. This paper reports and reflects upon an action research setting consisting of ...
  • Assessment of Classifiers and Remote Sensing Features of Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a Forest Area of High Species Diversity 

    Tuominen, Sakari; Näsi, Roope; Honkavaara, Eija; Balazs, Andras; Hakala, Teemu; Viljanen, Niko; Pölönen, Ilkka; Saari, Heikki; Ojanen, Harri (MDPI, 2018)
    Recognition of tree species and geospatial information on tree species composition is essential for forest management. In this study, tree species recognition was examined using hyperspectral imagery from visible to ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre