Double beta decay and the quest for Majorana neutrinos
Kotila, J. (2020). Double beta decay and the quest for Majorana neutrinos. In INPC2019 : 27th International Nuclear Physics Conference (Article 012023). Institute of Physics. Journal of Physics : Conference Series, 1643. https://doi.org/10.1088/1742-6596/1643/1/012023
Published in
Journal of Physics : Conference SeriesAuthors
Date
2020Copyright
© Authors, 2020
The observation of neutrinoless double beta (0νββ) decay remains crucial for understanding lepton number violation. The inverse half-life for 0νββ-decay is given by the product of a phase space factor (PSF), a nuclear matrix element (NME), which both rely on theoretical description, and a function f containing the physics beyond the standard model. Phase space factors and nuclear matrix elements have been evaluated, or are under evaluation, systematically for all processes of interest. The nuclear matrix elements have been calculated within the framework of the microscopic interacting boson model (IBM-2), and phase space factors have been evaluated using exact Dirac electron wave functions. The current situation is then discussed by combining the theoretical results with experimental limits on the half-life of neutrinoless double beta decay. The extracted limits on the average light neutrino mass are addressed, complemented with a discussion of other possible 0νββ-decay mechanisms and scenarios.
...


Publisher
Institute of PhysicsConference
International Nuclear Physics ConferenceIs part of publication
INPC2019 : 27th International Nuclear Physics ConferenceISSN Search the Publication Forum
1742-6588Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/47619078
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Research costs of Academy Research Fellow, AoF; Academy Research Fellow, AoFAdditional information about funding
This work was supported by the Academy of Finland(Grant Nos. 314733, 320062)License
Related items
Showing items with similar title or keywords.
-
Calculated solar-neutrino capture rate for a radiochemical 205Tl-based solar-neutrino detector
Kostensalo, Joel; Suhonen, Jouni; Zuber, K. (American Physical Society, 2020)Radiochemical experiments for low-energy solar-neutrino detection have been making headlines by exploiting the isotopes 37Cl and 71Ga. Such a very low-threshold measurement of this type can also be performed using 205Tl, ... -
Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment
DUNE Collaboration (American Physical Society (APS), 2023)A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. ... -
Theoretical predictions of wimp-nucleus and neutrino-nucleus scattering in context of dark matter direct detection
Pirinen, Pekka (University of Jyväskylä, 2018)The nature of dark matter is at present an open question. Assuming the main component of dark matter consists of weakly interacting massive particles (WIMPs), directly detecting such particle via a scattering process ... -
Solar neutrino detection in liquid xenon detectors via charged-current scattering to excited states
Haselschwardt, Scott; Lenardo, Brian; Pirinen, Pekka; Suhonen, Jouni (American Physical Society (APS), 2020)We investigate the prospects for real-time detection of solar neutrinos via the charged-current neutrino-nucleus scattering process in liquid xenon time projection chambers. We use a nuclear shell model, benchmarked with ... -
Estimated solar-neutrino capture rates of 131Xe : implications for multi-tonne Xe-based experiments
Kostensalo, J.; Suhonen, J.; Zuber, K. (Institute of Physics, 2021)Various large-scale experiments for double beta decay or dark matter are based on xenon. Current experiments are on the tonne scale, but future ideas also aim for even larger sizes. Here we study the potential of the isotope ...