Knowledge Discovery from Network Logs
Sipola, T. (2015). Knowledge Discovery from Network Logs. In M. Lehto, & P. Neittaanmäki (Eds.), Cyber Security: Analytics, Technology and Automation (pp. 195-203). Springer International Publishing. Intelligent Systems, Control and Automation: Science and Engineering, 78. https://doi.org/10.1007/978-3-319-18302-2_12
Authors
Date
2015Copyright
© 2015 Springer
Modern communications networks are complex systems, which facilitates malicious behavior. Dynamic web services are vulnerable to unknown intrusions, but traditional cyber security measures are based on fingerprinting. Anomaly detection differs from fingerprinting in that it finds events that differ from the baseline traffic. The anomaly detection methodology can be modelled with the knowledge discovery process. Knowledge discovery is a high-level term for the whole process of deriving actionable knowledge from databases. This article presents the theory behind this approach, and showcases research that has produced network log analysis tools and methods.
Publisher
Springer International PublishingParent publication ISBN
978-3-319-18301-5Is part of publication
Cyber Security: Analytics, Technology and AutomationISSN Search the Publication Forum
2213-8986Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/24769601
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Intrusion detection applications using knowledge discovery and data mining
Juvonen, Antti (University of Jyväskylä, 2014) -
Knowledge discovery using diffusion maps
Sipola, Tuomo (University of Jyväskylä, 2013) -
Detecting cellular network anomalies using the knowledge discovery process
Chernov, Sergey (University of Jyväskylä, 2015)Analytical companies unanimously forecast the exponential growth of mobile traffic consumption over the next five years. The densification of a network structure with small cells is regarded as a key solution to meet growing ... -
Feature extraction for supervised learning in knowledge discovery systems
Pechenizkiy, Mykola (University of Jyväskylä, 2005)Tiedon louhinnalla pyritään paljastamaan tietokannasta tietomassaan sisältyviä säännönmukaisuuksia, joiden olemassaolosta ei vielä olla tietoisia. Kun tietokantaan sisältyvät tiedot ovat kovin moniulotteisia, yksittäisten ... -
Dynamic integration of data mining methods in knowledge discovery systems
Tsymbal, Alexey (University of Jyväskylä, 2002)