Show simple item record

dc.contributor.authorWang, Xiulin
dc.date.accessioned2020-11-18T15:18:05Z
dc.date.available2020-11-18T15:18:05Z
dc.date.issued2020
dc.identifier.isbn978-951-39-8407-6
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72668
dc.description.abstractContinuous advancement of brain imaging techniques has witnessed data analysis methods evolving from matrix component analysis to tensor component analysis, from individual analysis to group analysis regarding the analysis of brain data with multi-set/multi-modal, multi-coupling and multi-way characteristics. Coupled matrix/tensor factorization is robust in merging the advantages of analysis methods, including multi-way retainability, flexible coupling settings, mild uniqueness conditions, and applicability of various constraints, which is relatively difficult for most existing methods. Therefore, this dissertation aims to develop efficient coupled nonnegative matrix/tensor factorization algorithms, which can be used for the analysis of brain imaging data at the group level. First, aiming at constrained group analysis of data from multiple sources, we design a flexible model of coupled nonnegative matrix factorization with sparse regularization and adopt alternating direction method of multipliers (ADMM) for optimization. Then, to reduce the high computational cost of largescale problems, we propose three efficient coupled nonnegative tensor factorization algorithms, which are respectively based on fast hierarchical alternating least squares (fHALS), alternating proximal gradient (APG) and a combination of APG and low-rank approximation. Experiments using synthetic and real-world data are conducted to demonstrate the performances of the proposed algorithms. Specifically, for multi-subject simulated functional magnetic resonance imaging data, the proposed ADMMbased algorithm can achieve better performance than its competitors and extract both common and individual patterns while correcting the disorders of common patterns. For multi-subject ongoing electroencephalography data, the proposed fHALS-based algorithm can effectively extract brain activities of interest associated with the musical stimulus. For multi-subject event-related potential data, the proposed APG-based algorithms can obtain higher decomposition accuracy and more robust multi-domain feature extraction stability, and low-rank approximation can greatly improve computation efficiency without losing the accuracy. Overall, according to data characteristics , we have developed efficient coupled nonnegative matrix/tensor decomposition algorithms, which have been successfully applied to the group analysis of brain imaging data. Keywords: Brain imaging data, coupled constraint, group analysis, nonnegative matrix/tensor factorization, sparse regularizationen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJyväskylän yliopisto
dc.relation.ispartofseriesJYU Dissertations
dc.relation.haspart<b>Artikkeli I:</b> Wang, Xiulin; Liu, Wenya; Cong, Fengyu; Ristaniemi, Tapani (2020). Group Nonnegative Matrix Factorization with Sparse Regularization in Multi-set Data. In <i>EUSIPCO 2020 : 28th European Signal Processing Conference (pp. 2125-2129). European Signal Processing Conference. IEEE.</i> <a href="https://doi.org/10.23919/Eusipco47968.2020.9287756"target="_blank"> DOI: 10.23919/Eusipco47968.2020.9287756</a>
dc.relation.haspart<b>Artikkeli II:</b> Wang, X., Zhang, C., Ristaniemi, T., & Cong, F. (2019). Generalization of Linked Canonical Polyadic Tensor Decomposition for Group Analysis. In <i>H. Lu, H. Tang, & Z. Wang (Eds.), ISNN 2019 : Advances in Neural Networks : 16th International Symposium on Neural Networks, Proceedings, Part II (pp. 180-189). Springer International Publishing.</i> <a href="https://doi.org/10.1007/978-3-030-22808-8_19"target="_blank"> DOI: 10.1007/978-3-030-22808-8_19</a>
dc.relation.haspart<b>Artikkeli III:</b> Wang, X., Ristaniemi, T., & Cong, F. (2019). Fast Implementation of Double-coupled Nonnegative Canonical Polyadic Decomposition. In <i>ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 8588-8592). IEEE.</i> <a href="https://doi.org/10.1109/ICASSP.2019.8682737"target="_blank"> DOI: 10.1109/ICASSP.2019.8682737</a>
dc.relation.haspart<b>Artikkeli IV:</b> Wang, Xiulin; Liu, Wenya; Toiviainen, Petri; Ristaniemi, Tapani; Cong, Fengyu (2020). Group analysis of ongoing EEG data based on fast double-coupled nonnegative tensor decomposition. <i>Journal of Neuroscience Methods, 330, 108502.</i> <a href="https://doi.org/10.1016/j.jneumeth.2019.108502"target="_blank"> DOI: 10.1016/j.jneumeth.2019.108502</a>
dc.relation.haspart<b>Artikkeli V:</b> Xiulin Wang, Tapani Ristaniemi and Fengyu Cong. (2020). Fast Learnings of Coupled Nonnegative Tensor Decomposition Using Optimal Gradient and Low-rank Approximation. <i>Submitted.</i>
dc.rightsIn Copyright
dc.subjectaivotutkimus
dc.subjectkuvantaminen
dc.subjecttoiminnallinen magneettikuvaus
dc.subjectEEG
dc.subjectsignaalianalyysi
dc.subjectsignaalinkäsittely
dc.subjectmatriisit
dc.subjectalgoritmit
dc.subjectbrain imaging data
dc.subjectcoupled constraint
dc.subjectgroup analysis
dc.subjectnonnegative matrix/tensor factorization
dc.subjectsparse regularization
dc.titleCoupled Nonnegative Matrix/Tensor Factorization in Brain Imaging Data
dc.typedoctoral thesis
dc.identifier.urnURN:ISBN:978-951-39-8407-6
dc.contributor.tiedekuntaFaculty of Information Technologyen
dc.contributor.tiedekuntaInformaatioteknologian tiedekuntafi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.relation.issn2489-9003
dc.rights.copyright© The Author & University of Jyväskylä
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright