Show simple item record

dc.contributor.authorSilaev, Mikhail
dc.date.accessioned2020-11-17T06:41:26Z
dc.date.available2020-11-17T06:41:26Z
dc.date.issued2020
dc.identifier.citationSilaev, M. (2020). Large enhancement of spin pumping due to the surface bound states in normal metal–superconductor structures. <i>Physical Review B</i>, <i>102</i>(18), Article 180502. <a href="https://doi.org/10.1103/PhysRevB.102.180502" target="_blank">https://doi.org/10.1103/PhysRevB.102.180502</a>
dc.identifier.otherCONVID_46999490
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72639
dc.description.abstractWe show that the spin pumping from ferromagnetic insulator into the adjacent metallic spin sink can be strongly stimulated by the superconducting correlations. The key physical mechanism responsible for this effect is the presence of Andreev bound states at the ferromagnetic insulator/superconductor interface. We consider the minimal model when these states appear because of the suppressed pairing constant within the interfacial normal layer. For thin normal layers we obtain a strongly peaked temperature dependence of the Gilbert damping coefficient which has been recently observed in such systems. For thicker normal layers the Gilbert damping monotonically increases down to the temperatures much smaller than the critical one. The suggested model paves the way to controlling the temperature dependence of the spin pumping by fabricating hybrid normal metal–superconductor spin sinks.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofseriesPhysical Review B
dc.rightsIn Copyright
dc.subject.otherspintronics
dc.subject.othersuperconductivity
dc.titleLarge enhancement of spin pumping due to the surface bound states in normal metal–superconductor structures
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202011176659
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2469-9950
dc.relation.numberinseries18
dc.relation.volume102
dc.type.versionpublishedVersion
dc.rights.copyright©2020 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber297439
dc.subject.ysosuprajohteet
dc.subject.ysomagneettiset ominaisuudet
dc.subject.ysospin (kvanttimekaniikka)
dc.subject.ysosuprajohtavuus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9946
jyx.subject.urihttp://www.yso.fi/onto/yso/p597
jyx.subject.urihttp://www.yso.fi/onto/yso/p38874
jyx.subject.urihttp://www.yso.fi/onto/yso/p9398
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1103/PhysRevB.102.180502
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationThis work was supported by the Academy of Finland (Project No. 297439) and Russian Science Foundation (Grant No. 20-12-00053).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright