Näytä suppeat kuvailutiedot

dc.contributor.authorZhu, Yongjie
dc.date.accessioned2020-11-02T12:46:08Z
dc.date.available2020-11-02T12:46:08Z
dc.date.issued2020
dc.identifier.isbn978-951-39-8348-2
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72437
dc.description.abstractHow does human cognition emerge from neural dynamics? A proposed hypothesis states that efficient neuronal communication between brain regions through oscillatory synchronization gives the basis for cognitive processing. These synchronized oscillatory networks are transiently forming and dissolving at the timescale of milliseconds to support specific cognitive functions. However, unlike resting-state networks, there is still no appropriate technique for characterizing the complicated organization of such cognitive networks during task performance, especially naturalistic tasks (e.g., music listening). In this thesis, we exploit the high spatiotemporal resolution of electro- or magnetoencephalography (EEG/MEG) to match the rapid timescales of synchronized neural populations and develop EEG/MEG analysis tools to probe the reconfiguration of electrophysiology brain networks during cognitive task performance. In the first study, we applied CANDECOMP/PARAFAC (CP) tensor decomposition to single-trial wavelet-transformed representations of sourcelevel EEG data recorded in a simplified and controlled task, to extract the stimuliinduced oscillatory brain activity. In the second study, by combining spatial Fourier independent component analysis with acoustic feature extraction, we probed the spatial-spectral signatures of brain patterns during continuously listening to natural music. In the third study, we examined the connectivity dynamics during natural speech comprehension via performing principal component analysis on envelope-based connectivity measurements concatenated across time or subjects. In the fourth study, we introduced a novel approach based on CP decomposition to investigate the task-related functional networks with a distinct spectrum during self-peace movement and working memory tasks. Then, we extended this tensor-based method of analyzing network dynamics during natural music listening in the fifth study. In conclusion, these studies introduce novel approaches based on matrix or tensor decomposition to allow for multi-way connectivity analysis considering its non-stationarity, frequency-specificity, and spatial topography. Keywords: naturalistic stimuli, brain networks, functional connectivity, dynamics, frequency-specificity, tensor decompositionen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJyväskylän yliopisto
dc.relation.ispartofseriesJYU Dissertations
dc.relation.haspart<b>Artikkeli I:</b> Zhu, Y., Li, X., Ristaniemi, T., & Cong, F. (2019). Measuring the Task Induced Oscillatory Brain Activity Using Tensor Decomposition. In <i>ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 8593-8597). IEEE.</i> <a href="https://doi.org/10.1109/ICASSP.2019.8682355"target="_blank"> DOI: 10.1109/ICASSP.2019.8682355</a>
dc.relation.haspart<b>Artikkeli II:</b> Zhu, Yongjie; Zhang, Chi; Poikonen, Hanna; Toiviainen, Petri; Huotilainen, Minna; Mathiak, Klaus; Ristaniemi, Tapani; Cong, Fengyu (2020). Exploring Frequency-Dependent Brain Networks from Ongoing EEG Using Spatial ICA During Music Listening. <i>Brain Topography, 33 (3), 289-302.</i> <a href="https://doi.org/10.1007/s10548-020-00758-5"target="_blank"> DOI: 10.1007/s10548-020-00758-5</a>
dc.relation.haspart<b>Artikkeli III:</b> Zhu, Yongjie; Liu, Jia; Ristaniemi, Tapani; Cong, Fengyu (2020). Distinct Patterns of Functional Connectivity During the Comprehension of Natural, Narrative Speech. <i>International Journal of Neural Systems, 30 (3), 2050007.</i> <a href="https://doi.org/10.1142/S0129065720500070"target="_blank"> DOI: 10.1142/S0129065720500070</a>
dc.relation.haspart<b>Artikkeli IV:</b> Zhu, Yongjie; Liu, Jia; Ye, Chaoxiong; Mathiak, Klaus; Astikainen, Piia; Ristaniemi, Tapani; Cong, Fengyu (2020). Discovering dynamic task-modulated functional networks with specific spectral modes using MEG. <i>NeuroImage, 218, 116924.</i> <a href="https://doi.org/10.1016/j.neuroimage.2020.116924"target="_blank"> DOI: 10.1016/j.neuroimage.2020.116924</a>
dc.relation.haspart<b>Artikkeli V:</b> Zhu, Yongjie; Liu, Jia; Mathiak, Klaus; Ristaniemi, Tapani; Cong, Fengyu (2020). Deriving electrophysiological brain network connectivity via tensor component analysis during freely listening to music. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28 (2), 409-418.</i> <a href="https://doi.org/10.1109/tnsre.2019.2953971"target="_blank"> DOI: 10.1109/tnsre.2019.2953971</a>
dc.rightsIn Copyright
dc.subjectaivotutkimus
dc.subjectkognitiivinen neurotiede
dc.subjectärsykkeet
dc.subjectkuunteleminen
dc.subjecthermoverkot (biologia)
dc.subjectEEG
dc.subjectMEG
dc.subjectsignaalianalyysi
dc.subjectsignaalinkäsittely
dc.subjectnaturalistic stimuli
dc.subjectbrain networks
dc.subjectfunctional connectivity
dc.subjectdynamics
dc.subjectfrequency-specificity
dc.subjecttensor decomposition
dc.titleIdentifying task-related dynamic electrophysiological brain connectivity
dc.typedoctoral thesis
dc.identifier.urnURN:ISBN:978-951-39-8348-2
dc.contributor.tiedekuntaFaculty of Information Technologyen
dc.contributor.tiedekuntaInformaatioteknologian tiedekuntafi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.relation.issn2489-9003
dc.rights.copyright© The Author & University of Jyväskylä
dc.rights.accesslevelopenAccess
dc.type.publicationdoctoralThesis
dc.format.contentfulltext
dc.rights.urlhttps://rightsstatements.org/page/InC/1.0/


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright