dc.contributor.author | Zhu, Yongjie | |
dc.date.accessioned | 2020-11-02T12:46:08Z | |
dc.date.available | 2020-11-02T12:46:08Z | |
dc.date.issued | 2020 | |
dc.identifier.isbn | 978-951-39-8348-2 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/72437 | |
dc.description.abstract | How does human cognition emerge from neural dynamics? A proposed
hypothesis states that efficient neuronal communication between brain regions
through oscillatory synchronization gives the basis for cognitive processing.
These synchronized oscillatory networks are transiently forming and dissolving
at the timescale of milliseconds to support specific cognitive functions. However,
unlike resting-state networks, there is still no appropriate technique for
characterizing the complicated organization of such cognitive networks during
task performance, especially naturalistic tasks (e.g., music listening).
In this thesis, we exploit the high spatiotemporal resolution of electro- or
magnetoencephalography (EEG/MEG) to match the rapid timescales of
synchronized neural populations and develop EEG/MEG analysis tools to probe
the reconfiguration of electrophysiology brain networks during cognitive task
performance.
In the first study, we applied CANDECOMP/PARAFAC (CP) tensor
decomposition to single-trial wavelet-transformed representations of sourcelevel
EEG data recorded in a simplified and controlled task, to extract the stimuliinduced
oscillatory brain activity. In the second study, by combining spatial
Fourier independent component analysis with acoustic feature extraction, we
probed the spatial-spectral signatures of brain patterns during continuously
listening to natural music. In the third study, we examined the connectivity
dynamics during natural speech comprehension via performing principal
component analysis on envelope-based connectivity measurements
concatenated across time or subjects. In the fourth study, we introduced a novel
approach based on CP decomposition to investigate the task-related functional
networks with a distinct spectrum during self-peace movement and working
memory tasks. Then, we extended this tensor-based method of analyzing
network dynamics during natural music listening in the fifth study.
In conclusion, these studies introduce novel approaches based on matrix or
tensor decomposition to allow for multi-way connectivity analysis considering
its non-stationarity, frequency-specificity, and spatial topography.
Keywords: naturalistic stimuli, brain networks, functional connectivity,
dynamics, frequency-specificity, tensor decomposition | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Jyväskylän yliopisto | |
dc.relation.ispartofseries | JYU Dissertations | |
dc.relation.haspart | <b>Artikkeli I:</b> Zhu, Y., Li, X., Ristaniemi, T., & Cong, F. (2019). Measuring the Task Induced Oscillatory Brain Activity Using Tensor Decomposition. In <i>ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 8593-8597). IEEE.</i> <a href="https://doi.org/10.1109/ICASSP.2019.8682355"target="_blank"> DOI: 10.1109/ICASSP.2019.8682355</a> | |
dc.relation.haspart | <b>Artikkeli II:</b> Zhu, Yongjie; Zhang, Chi; Poikonen, Hanna; Toiviainen, Petri; Huotilainen, Minna; Mathiak, Klaus; Ristaniemi, Tapani; Cong, Fengyu (2020). Exploring Frequency-Dependent Brain Networks from Ongoing EEG Using Spatial ICA During Music Listening. <i>Brain Topography, 33 (3), 289-302.</i> <a href="https://doi.org/10.1007/s10548-020-00758-5"target="_blank"> DOI: 10.1007/s10548-020-00758-5</a> | |
dc.relation.haspart | <b>Artikkeli III:</b> Zhu, Yongjie; Liu, Jia; Ristaniemi, Tapani; Cong, Fengyu (2020). Distinct Patterns of Functional Connectivity During the Comprehension of Natural, Narrative Speech. <i>International Journal of Neural Systems, 30 (3), 2050007.</i> <a href="https://doi.org/10.1142/S0129065720500070"target="_blank"> DOI: 10.1142/S0129065720500070</a> | |
dc.relation.haspart | <b>Artikkeli IV:</b> Zhu, Yongjie; Liu, Jia; Ye, Chaoxiong; Mathiak, Klaus; Astikainen, Piia; Ristaniemi, Tapani; Cong, Fengyu (2020). Discovering dynamic task-modulated functional networks with specific spectral modes using MEG. <i>NeuroImage, 218, 116924.</i> <a href="https://doi.org/10.1016/j.neuroimage.2020.116924"target="_blank"> DOI: 10.1016/j.neuroimage.2020.116924</a> | |
dc.relation.haspart | <b>Artikkeli V:</b> Zhu, Yongjie; Liu, Jia; Mathiak, Klaus; Ristaniemi, Tapani; Cong, Fengyu (2020). Deriving electrophysiological brain network connectivity via tensor component analysis during freely listening to music. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28 (2), 409-418.</i> <a href="https://doi.org/10.1109/tnsre.2019.2953971"target="_blank"> DOI: 10.1109/tnsre.2019.2953971</a> | |
dc.rights | In Copyright | |
dc.subject | aivotutkimus | |
dc.subject | kognitiivinen neurotiede | |
dc.subject | ärsykkeet | |
dc.subject | kuunteleminen | |
dc.subject | hermoverkot (biologia) | |
dc.subject | EEG | |
dc.subject | MEG | |
dc.subject | signaalianalyysi | |
dc.subject | signaalinkäsittely | |
dc.subject | naturalistic stimuli | |
dc.subject | brain networks | |
dc.subject | functional connectivity | |
dc.subject | dynamics | |
dc.subject | frequency-specificity | |
dc.subject | tensor decomposition | |
dc.title | Identifying task-related dynamic electrophysiological brain connectivity | |
dc.type | doctoral thesis | |
dc.identifier.urn | URN:ISBN:978-951-39-8348-2 | |
dc.contributor.tiedekunta | Faculty of Information Technology | en |
dc.contributor.tiedekunta | Informaatioteknologian tiedekunta | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.relation.issn | 2489-9003 | |
dc.rights.copyright | © The Author & University of Jyväskylä | |
dc.rights.accesslevel | openAccess | |
dc.type.publication | doctoralThesis | |
dc.format.content | fulltext | |
dc.rights.url | https://rightsstatements.org/page/InC/1.0/ | |