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ISSN 2489-9003; 305)

ISBN 978-951-39-8348-2 (PDF)

How does human cognition emerge from neural dynamics? A proposed
hypothesis states that efficient neuronal communication between brain regions
through oscillatory synchronization gives the basis for cognitive processing.
These synchronized oscillatory networks are transiently forming and dissolving
at the timescale of milliseconds to support specific cognitive functions. However,
unlike resting-state networks, there is still no appropriate technique for
characterizing the complicated organization of such cognitive networks during
task performance, especially naturalistic tasks (e.g., music listening).

In this thesis, we exploit the high spatiotemporal resolution of electro- or
magnetoencephalography (EEG/MEG) to match the rapid timescales of
synchronized neural populations and develop EEG/MEG analysis tools to probe
the reconfiguration of electrophysiology brain networks during cognitive task
performance.

In the first study, we applied CANDECOMP/PARAFAC (CP) tensor
decomposition to single-trial wavelet-transformed representations of source-
level EEG data recorded in a simplified and controlled task, to extract the stimuli-
induced oscillatory brain activity. In the second study, by combining spatial
Fourier independent component analysis with acoustic feature extraction, we
probed the spatial-spectral signatures of brain patterns during continuously
listening to natural music. In the third study, we examined the connectivity
dynamics during natural speech comprehension via performing principal
component analysis on envelope-based connectivity measurements
concatenated across time or subjects. In the fourth study, we introduced a novel
approach based on CP decomposition to investigate the task-related functional
networks with a distinct spectrum during self-peace movement and working
memory tasks. Then, we extended this tensor-based method of analyzing
network dynamics during natural music listening in the fifth study.

In conclusion, these studies introduce novel approaches based on matrix or
tensor decomposition to allow for multi-way connectivity analysis considering
its non-stationarity, frequency-specificity, and spatial topography.

Keywords: naturalistic stimuli, brain networks, functional connectivity,
dynamics, frequency-specificity, tensor decomposition



TIIVISTELMA (ABSTRACT IN FINNISH)

Zhu, Yongjie

Tehtdviin liittyvdan dynaamisen aivojen toiminnallisen yhteyden tunnistaminen
Jyvaskyld: University of Jyvaskyld, 2020, 68 s. (+artikkelit)

(JYU Dissertations

ISSN 2489-9003; 305)

ISBN 978-951-39-8348-2 (PDF)

Kuinka kognitio syntyy hermodynamiikasta? Ehdotetun hypoteesin mukaan te-
hokas hermosolujen vilinen viestintd aivoalueiden viililld oskillaatiosynkronoin-
nin avulla antaa perustan kognitiiviselle prosessoinnille. Nama synkronoidut va-
rahtelevdt verkot ovat ohimenevid ja dynaamisia millisekuntien ajanjaksossa
kognitiivisten toimintojen tukemiseksi. Kuitenkaan ei vieldkd&n ole sopivaa me-
netelmdd kognitiivisten verkkojen monimutkaisen organisaation karakterisoi-
miseksi tehtdvdn suorittamisen aikana, etenkin naturalististen tehtdvien yhtey-
dessa.

Tdssd opinndytetyossd hyodynnetddn sahko- tai magnetoenkefalografian
(EEG / MEG) korkeaa spatiotemporaalista resoluutiota aivojen nopeiden aika-
taulujen mukauttamiseksi ja kehitetdan EEG / MEG-analyysimenetelmid koetti-
mistehtdvien suorittamisen aikana aivoverkkojen elektrofysiologisten maéritys-
ten koettamiseksi.

Ensimmadisessd tutkimuksessa sovelsimme CANDECOMP / PARAFAC
(CP) -tensorihajoamista yksinkertaisen tehtdvan yhteydessa tallennetuissa EEG-
tietojen yhden tutkimuksen aallonmuunnoksilla muunnettuihin esityksiin drsyk-
keiden aiheuttaman viarédhtelevan aivoaktiivisuuden erottamiseksi. Yhdistamalla
toisessa tutkimuksessa spatiaalisen Fourier-riippumattoman komponentti-
analyysin akustisten ominaisuuksien uuttamiseen, tutkimme aivojen kuvioiden
spatiaaliset ja spektriset allekirjoitukset jatkuvan kuunnellen luonnollista mu-
siikkia. Kolmannessa tutkimuksessa tutkimme yhteyksien dynamiikkaa luonnol-
lisen puheen ymmartdmisen aikana suorittamalla padkomponenttianalyysi kir-
jekuorepohjaisissa yhteysmittauksissa, jotka on ketjutettu ajan tai aiheiden valilla.
Neljannessd tutkimuksessa esittelimme uuden CP-hajoamiseen perustuvan la-
hestymistavan tutkia tehtdvaan liittyvia toiminnallisia verkostoja, joilla on selkea
spektri itserauhan liikkeen ja tyomuistion aikana. Sitten laajensimme tétd tenori-
pohjaista menetelmdd verkkodynamiikan analysoimiseksi luonnollisen musiikin
kuuntelun aikana viidennessa tutkimuksessa.

Nama tutkimukset esittelevit uusia ldhestymistapoja, jotka perustuvat mat-
riisin tai tensorin hajoamiseen monisuuntaisen yhteyden analyysin mahdollista-
miseksi ottaen huomioon sen epéstatsionaarisuus, taajuusspesifisyys ja alueelli-
nen topografia.

Asiasanat: naturalistiset drsykkeet, aivoverkot, toiminnallinen yhteys, dyna-
miikka, taajuusspesifisyys, tensorin hajoaminen
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1 INTRODUCTION

Although traditional experimental design for neruoscience has been well
developed, we still know little about how the human brain works and what
happens in our brain during the real-world experience. It becomes recently a
central and hot topic of cognitive neuroscience to understand how the human
brain perceives the complex inputs in the real-world and how the brain interacts
with the dynamic information in our environment. The modern neuroimage
techniques provide an opportunity to investigate such questions in non-invasive
ways with high spatial and temporal accuracy.

The traditional experimental settings in cognitive neuroscience are typically
simple and parametric tasks using abstract stimuli. Such designs rely heavily on
the well-controlled variables engaged and isolate targeted cognitive constructs,
such as viewing an isolated picture, listening to sounds (e.g. oddball tones). Even
though such carefully controlled experimental designs have been important for
cognitive neuroscience and allowed us to map cortical function and pinpoint
specific brain processes, the ecological validity of such stimuli is debatable and
not representative of the real-world experience occurring in everyday life.

To examine the real-world sensory experience over the past decades, an
increasing interest in neuroscience has been directed to using naturalistic stimuli
such as movies, music, and audio story that integrated the sensory stimuli
commonly encountered in our daily life. Although they are still performed on a
laboratory environment, these naturalistic paradigms give a reasonable
approximation of how we encounter sensory stimuli in our daily lives. Functional
magnetic resonance imaging (fMRI) that measures hemodynamic brain activity
has been already applied in such naturalistic paradigms. However, fMRI suffers
from the poor temporal resolution due to the protracted hemodynamic response.
In contrast, electrophysiological techniques, such as electroencephalography
(EEG) and magnetoencephalography (MEG), measure directly the activity of
neural cell populations with millisecond temporal accuracy, thus allowing to
study dynamics of cortical brain activity in high temporal resolution. However,
there are few sudies using M/EEG in naturalistic paradigms due to the low singal
to noise ratio compared with fMRI. This makes data-analysis challenging.



16

Therefore, it is necessary to develop novel analysis aproaches to enable
investigating the electrophysiological basis under the naturalistic paradigms.

1.1 Introducing functional connectivity

In the 1990s, a new aspect of functional neuroimaging began to be examined for
the functional processes, termed as functional connectivity (FC). Such
measurement was descripted as ‘statistical interdependence of signals between
distinct brain regions’ (Friston, 1994), which was usually calculated by the
temporal correlation between neuroimaging signals recorded independently at
two spatially separate brain regions. In other words, these spatially separate
regions were collaborative working during a certain cognitive process. For an
example of such functional connection, if you need to press the button when
hearing a tone, the auditory cortex that is processing the sound information and
should share this sound message with the motor cortex to execute the button
press. Such communication between those spatially separate brain regions is
referred to as functional connection. It is important to understand these
functional connections, since it is evident that efficient coordination among
regions in the human brain facilitates cognition and benefit the task performance.
Many studies show that the functional connectivity was disrupted in clinical
populations, such as schizophrenia, major depression disorder and Parkinson's
disease.

Due to the wide range of functional connectivity, non-invasive
neuroimaging methods that enable whole brain coverage have proven to be
widely used. Over the past decades, fMRI is the commonly used modality for
mapping the functional connectivity across the human brain. It should be
acknowledged for the milestone research by Biswal, which initially shown that
fMRI was able to enable the researcher to examine the functional connectivity
with better spatial resolution and non-invasive way. Biswal et al. found that the
temporal correlations existed even without any tasks between blood oxygen level
dependent (BOLD) time-courses between the right and left motor areas (Biswal,
Zerrin Yetkin, Haughton, & Hyde, 1995). Further work uncovers a several
number of robust, brain functional networks connected separate brain areas,
known as brain functional networks or resting-state networks (RSNs) (Beckmann,
DeLuca, Devlin, & Smith, 2005; Corbetta et al., 1998; Fox & Raichle, 2007; Smith
et al., 2009). Those functional networks have their own unique spatial properties
and are considered to dominate the key mental processes through supporting
sensory integration and other ways related to cognition or attention. Most brain
networks can be observed even at rest, thus RSN terminology is used.
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1.2 Electrophysiological functional networks

There is no doubt that fMRI is important and makes a huge contribution to the
study of functional connectivity, but there are limitations to using fMRI to
examine human brain. Firstly, the BOLD signal recorded by fMRI reflects the
hemodynamic brain activity and is thus an indirect measurement of neural brain
activity. The alteration in hemodynamics could cause artificial correlation among
separate brain regions. For instance, it is known that the variation of heart rate or
respiration could induce changes in BOLD response, which are significantly
correlated between separate cortical areas and resemble functional networks
(Murphy, Birn, & Bandettini, 2013; Tong, Hocke, Fan, Janes, & Frederick, 2015).
Such effect cannot be ignored especially when studying the non-stationary FC
(Birn, 2012; Murphy et al.,, 2013; Tong et al., 2015). Another is that a majority of
the dynamical functional processes are obfuscated due to the latent nature of
BOLD signals (5-8 seconds of delay after neural activity). These technical
limitations could be avoided if we applied electrophysiological recording (e.g.
EEG and MEG) to evaluate functional connectivity. These measurement
techniques, such as EEG and MEG, can directly record the electrophysiological
activity from the synchronized neural current flow with non-invasive way. They
have an excellent temporal resolution matching the rapid timescales of the neural
activity. In addition, MEG and high-density EEG systems can also achieve
relatively good spatial resolution. Thus, those advantages, combined with the
source localization technique, make it attractive to examine the
electrophysiological mechanism of brain networks with non-invasive nature.
Even before the increasing studies of functional connectivity, there were lots of
work exploring the relationship between hemodynamic responses and change in
neural oscillatory amplitude. The main finding is that there is a good spatial
correlation between hemodynamics and neural oscillation activity over a wide
frequency range (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001,
Moradi et al., 2003; Mukamel et al., 2005, Murphy et al., 2013; Singh, Barnes,
Hillebrand, Forde, & Williams, 2002; Winterer et al., 2007; Zumer, Brookes,
Stevenson, Francis, & Morris, 2010), whereas the spatial patterns between neural
oscillation and hemodynamics activity often differ during complicated cognitive
tasks (Furey et al., 2006; Liljestrom, Hultén, Parkkonen, & Salmelin, 2009;
Vartiainen, Liljestrom, Koskinen, Renvall, & Salmelin, 2011). Laufs and
colleagues observed that the correlation exists between fMRI attentional
networks and time-courses of EEG sensor using concurrent EEG/fMRI
techniques, first showing the independent electrophysiological evidence of
functional connectivity (Laufs et al., 2003). Another further study demonstrated
that each of functional networks had specific electrophysiological spectral
properties found from EEG measurements by applying independent component
analysis (ICA) (Mantini, Perrucci, Del Gratta, Romani, & Corbetta, 2007).
Recently, many studies begun to examine the functional networks using
source-level MEG and successfully replicated the topographies of functional
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connectivity derived by fMRI. de Pasquale et al. applied seed-based connection
methods to MEG at source space to observe the dorsal attention network and the
default mode network (De Pasquale et al.,, 2010). Brookes and his group
developed multiple MEG-network analysis approaches, showing many of the
fMRI derived networks could be replicated and matched by MEG at rest (Brookes,
Hale, et al., 2011; Brookes, Woolrich, et al., 2011). In addition, Hipp et al.
demonstrated that functional networks derived by EEG indicated spatial and
spectral structures (Hipp, Hawellek, Corbetta, Siegel, & Engel, 2012). Those
studies have started to provide evidences that the functional networks derived
by fMRI possessed an electrophysiological mechanism. Moreover,
electrophysiological functional networks have recently been compared with
networks derived by fMRI during naturalistic paradigms (Betti, Corbetta, de
Pasquale, Wens, & Della Penna, 2018; Betti et al., 2013; Dmochowski et al., 2014;
Lankinen, Saari, Hari, & Koskinen, 2014; Lankinen et al., 2018, Whittingstall,
Bartels, Singh, Kwon, & Logothetis, 2010). For example, the spatial topography
of FC derived from fMRI and changes induced by natural movie were observed
to match well with MEG (Betti et al., 2013).

1.3 Towards the dynamic functional connectivity

Almost all approaches for functional connectivity are adopted to explore the
statistic interdependence across cortical regions by calculating the temporal
correlation over the duration of the whole experiment process. Such procedure
results in functional connectivity from data recorded over minutes or even hours.
The underlying assumption of this procedure is that functional connectivity is
temporally stationary. However, assessing variance of BOLD signals over time
shows that time series are non-stationary and suggests that it is necessary for
analysis of functional connectivity to consider the non-stationarity. An increasing
number of studies have begun to provide evidences about the non-stationarity.
Many studies have applied fMRI to examine the temporal non-stationarity of FC.
Chang et al. first examined the non-stationarity using a sliding window method,
where FC was estimated across many segmented time windows (Chang & Glover,
2010). They found that the amplitude of functional connections fluctuated relying
upon which time window they evaluated. Smith et al. demonstrated that
previously derived functional networks were dynamically formed from several
components (Smith et al, 2012). A landmark study from Allen et al
demonstrated that the spatial structure of RSNs transiently varies over time
(Allen et al., 2014). Those potential results are in line with the non-stationary
assumption of dynamic connectivity, and implies that future analysis methods
should take temporal non-stationarity onto account to track the dynamic rather
than whole time average connectivity (Hutchison et al., 2013). However, as
mentioned above, the slow nature of hemodynamic response of fMRI obscures
the temporal signature of dynamic connectivity. Thus, MEG and EEG modalities
with high time resolution could be used to capture such transient dynamics.
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An increasing body of studies are starting to demonstrate that
electrophysiological brain networks derived from M/EEG also show the
significant non-stationarity in time (Liu, Farahibozorg, Porcaro, Wenderoth, &
Mantini, 2017; Tewarie et al., 2019; Zhu, Liu, Ye, et al., 2020). An early study
demonstrated the temporal and spectral signatures of dorsal attention and
default mode networks by considering the temporal non-stationarity of signals
(De Pasquale et al., 2010). Brookes and colleagues developed multiple analysis
pipelines for MEG studies and demonstrated that the functional connectivity
significantly fluctuated such as in the sensorimotor network (Brookes, Hale, et
al., 2011). Vidaurre and his colleagues proposed methods based on Hidden
Markov Model to enable to track the patterns of electrophysiological connectivity
at a multiple scale of time points (Baker et al., 2014; Vidaurre, Abeysuriya, et al.,
2018; Vidaurre, Hunt, et al., 2018; Vidaurre et al., 2016; Vidaurre, Smith, &
Woolrich, 2017). Their results uncovered that brain networks (states) with spatial
structures similar to RSNs transiently (100-200 ms) reorganized (Baker et al.,
2014).

1.4 Naturalistic paradigmas

Traditional experimental settings in cognitive neuroscience relied on relatively
simple parametric tasks using an abstract stimulus that are transferred with well-
controlled and sparse temporal order (Eickhoff, Milham, & Vanderwal, 2020;
Hasson, Malach, & Heeger, 2010; Malcolm, Groen, & Baker, 2016; Sonkusare,
Breakspear, & Guo, 2019; Vanderwal, Eilbott, & Castellanos, 2019). Such design
tightly controls the variables involved and isolates the targeted behavior or
cognitive structure as much as possible. While those approaches have
contributed significantly to our understanding of the human brain function over
the last decades, its ecological validity remains uncertain. The advantage of using
well-controlled and simple stimuli, such as isolated face pictures or beep sounds,
is that the signatures of stimuli are well-known and can be varied in a pre-defined
manner. These types of experimental designs are very important for
investigating specific brain regions or brain processes, especially in the sensory
system. However, our daily lives are complex; the events and stimuli around us
are continuous, overlapping each other, and spread out on different time scales,
ranging from low-level perception of milliseconds to minutes, hours, or years of
social interaction (Hari, Parkkonen, & Nangini, 2010). In other words, these
abstract stimuli rarely emerge in isolation in our real life but are rather
dynamically integrated with multi-modal sensory information. Moreover, our
ongoing brain state interplays with the sensory inputs, as we continuously
communicate with our environment and other people. Therefore, it is evident
that very well-controlled experimental designs could not track the complexity of
our brain function, and it is unclear how the findings from well-controlled
experimental settings generalize to the real-life situation. For instance, it has been
demonstrated that neural responses to complex stimulus, such as naturalistic
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pictures, cannot be well forecasted from the response to artificial stimulus such
as sinusoidal gratings (Felsen & Dan, 2005), and that rich natural stimulus
involve brain regions more widely than simplified stimuli (Bartels & Zeki, 2004).
Also, emerging evidence and theoretical consideration imply that the human
brain’s responses to naturalistic stimuli are more reliably and strongly tuned than
to simplistic artificial stimuli (Touryan, Felsen, & Dan, 2005; Yao, Shi, Han, Gao,
& Dan, 2007). For example, even in those brain areas that classically respond to
static faces (such as the fusiform gyrus), adding natural biological motion to facial
stimuli increases the intensity of the cortical response (Schultz & Pilz, 2009). The
studies of naturalistic paradigms could therefore uncover phenomena that the
very abstract or well-controlled stimuli could not.

It is not surprisingly that the influence of naturalistic studies continues to
grow. The landmark fMRI studies by Hasson et al. (Hasson, Nir, Levy, Fuhrmann,
& Malach, 2004) and Bartels et al. (Bartels & Zeki, 2004) shown that It is possible
to reliably link brain activity to complex natural stimuli (i.e. movies). In their
studies, the participants were watching movies and the inter-subject
synchronization of brain responses were examined. Later studies have also
begun to investigate the brain responses by letting subjects listen natural music
(Alluri et al., 2012; Cong, Alluri, et al., 2013), audio narratives (Brennan et al,,
2012; Koskinen & Seppd, 2014; Lerner, Honey, Silbert, & Hasson, 2011; Malinen,
Hlushchuk, & Hari, 2007; Nummenmaa et al., 2014; Simony et al., 2016; Wilson,
Molnar-Szakacs, & Iacoboni, 2008), or play video games (Kdtsyri, Hari, Ravaja, &
Nummenmaa, 2013).

1.5 Thesis overview

The aim of this thesis is to attempt to probe the electrophysiological
underpinnings of functional connectivity during naturalistic stimuli especially
natural music, by exploiting the unparalleled spatiotemporal resolution of
electrophysiology (i.e. EEG and MEGQG). It is hoped that the new approaches are
developed to enable researchers to analyze the M/EEG data collected during
naturalistic stimuli studies, to increase the understanding of dynamic signatures
of brain networks in ecologically valid paradigms, and therefore advance the
utility of M/EEG in naturalistic experiments in the future. The rest of this thesis
is organized as follows.

Chapter 2 reviews the literature on the popular methods used to assess
functional connectivity. It then presents some matrix/tensor decomposition
techniques and analysis pipelines applied to extract the task-related functional
networks in M/EEG studies.

Chapter 3 describes the aim of the studies, the techniques we used and the
data we have in this thesis.

Chapter 4 summarizes the contribution and discussion of each publication.

Chapter 5 concludes the whole research work of this thesis, limitations and
future directions.



2 MEASUREMENT OF FUNCTIONAL CONNECTI-
VITY

This chapter focus on the measurement of the functional connectivity (FC) across
the separate brain regions. To restate Chapter 1, FC are referred to as a statistical
interdependency between recorded signals at spatially separate cortical regions.
For tMRI studies, FC usually refers to the correlation of BOLD signals. However,
the definition of FCis quite broader for M/EEG. The rich spatio-temporal natures
of M/EEG data enables FC to be estimated in many different ways (Brookes et
al., 2014; Scholvinck, Leopold, Brookes, & Khader, 2013), and although many
types of couplings have been very prominent, two of them are particularly
popular. The first one results from the phase synchronisation between band-
limited oscillations. The second is based on the correlation between amplitudes
of oscillatory signals.

Although the source construction has advantages, it is known that the
measurement of inter-region connectivity is hampered by the field spread (for
MEG) and volume conduction (for EEG), which is also called signal leakage or
cross talk in somewhere (Brookes, Hale, et al.,, 2011; Brookes et al., 2014;
Colclough, Brookes, Smith, & Woolrich, 2015). Such phenomenon arise from the
source-constructed errors due to the ill-posed nature of inverse problems, and
artificially lead into linear correlations. To ovecome the spurious connections
caused by signal leakage, alternative connectivity metrics based on phase and
amplitude correlation have been proposed, such as imaginary coherence (Nolte
et al., 2004) and orthogonalized amplitude correlation (Brookes, Woolrich, &
Barnes, 2012; Hipp et al., 2012). Being insensitive to zero-lag correlations, these
techniques have been growingly popular in estimation of correlations that could
not be attributed to field spread or volume conduction. In this chapter, we
introduced the commonly used approaches to calculatingthe functional
connectivity using source constructed M/EEG data in the literature. Although it
is not intended to examine each connectivity metric in detail, it covers many
technical aspects that need to be addressed for successful studies. Section 2.1
reviews the phase-based and amplitude-based methods for functional
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connectivity. Section 2.2 presents the commonly used methods to assessing the
dynamic functional connectivity.

2.1 Functional connectivity metrics

How human brain network develops, functions, and supports cognition is a large
and increasing topic in many areas of neuroscience (Sporns, 2010). Functional
networks work at multiple spatial and temporal scales (Varela, Lachaux,
Rodriguez, & Martinerie, 2001). From the most intuitive point of view, the
functional connectivity descripts the relationship between pairs of signals. It was
commonly used for fMRI study over the past decades. However, for the M/EEG
signal, which includes more rich information than fMRI, many different
measurements might be considered to explore the underling basis (Scholvinck et
al., 2013). Many studies have shown that oscillatory synchronization might be a
key mechanism by which neural populations transmit information and form
larger networks (Fries, 2005, 2015; Salinas & Sejnowski, 2001; Singer, 1993). Engel
and colleagues reviewed the literature of functional connectivity, in which two
types of intrinsic coupling modes were suggested (Engel, Gerloff, Hilgetag, &
Nolte, 2013). One of them is the envelope-based coupling that measures the
relation of power between pairs of signals. Another is the phase-based coupling
that assess the synchronization of the signals based on the phase. Figure 1
demonstrates the examples of envelope and phase coupling.

A. Envelope (amplitude) coupling B. Phase coupling

Source A
Source A

Source B
Source B

FIGURE1 Illustration of phase- and envelope-based connectivity analysis (Adapted
from (O'Neill, 2016)). A. Envelope connectivity is based on the correlation be-
tween envelopes of band-limited signals. B. Phase coupling is based on the
relationship of phases of oscillatory signals.

These two types of coupling metrics focus on different aspects of M/EEG
signals and tend to reveal different parts of the broader functional connection
diagram (Scholvinck et al., 2013). Amplitude-based methods tend to be more
similar to the long-range connections measured in fMRI signals and phase-based
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connectivity less so (Brookes, Hale, et al., 2011; Tewarie et al., 2016), which is
probably indicated in invasive recordings where amplitude correlation appears
to be longer range than correlations of the raw time series (Leopold, Murayama,
& Logothetis, 2003). However, this does not mean that phase-based methods are
useless in the analysis of electrophysiological functional connectivity since they
have been successfully applied for variety of electrophysiological studies (Grofs
et al., 2001; Hillebrand, Barnes, Bosboom, Berendse, & Stam, 2012; Kujala et al.,
2007; Marzetti et al., 2013; Nolte et al., 2004). Recent studies have shown the
advantages of multi-metric analysis (combining amplitude and phase
connectivity measurements), in which the combination of simultaneous phase
and amplitude assessment could be better to predict the network patterns
measured in fMRI than either amplitude or phase methods could individually
(Tewarie et al., 2016). In the current thesis, we used the amplitude-based methods
for ongoing M/EEG recordings since it has been successfully to duplicate the
functional networks measured by fMRI in the past decades (Colclough et al.,
2016). We also used phase-based methods to assess the functional connectivity in
task such, working memory and motor experiments.

2.1.1 Phase-based connectivity

Phase-based connectivity methods depend on the distribution of phase
differences between two signals. When neuronal populations were functionally
coupled, the timing of their oscillatory courses, as estimated via phase, would be
synchronized. There are a few advantages using phase-based connectivity
methods. They are widely applied in a variety of experiments and have been used
to study the organization and dynamics of networks on diverse spatial and
temporal scales. This is to some extent owing to the neurophysiological
interpretation of phase-based connectivity analyses. Some phase-based methods
are also insensitive to time lag (others are sensitive to lag), suggesting that as long
as the temporal relationship between activities at two regions is consistent over
time and/or trials, the phase lag would not impact the strength of the
connectivity. Also, there are several disadvantages. Phase-based measurements
usually rely upon accurate time relationships in the same frequency band, so they
are susceptible to temporal jitter or uncertainty in the accurate timing of
experimental events. Those uncertainties in time may have a greater impact at
higher frequencies (Cohen, 2014).

Here, we review some commonly used phase-based methods for functional
connectivity. It should be noted that all the phase-based methods introduced can
be calculated either over time or trials. Calculation over trials is able to assess
task-related phase-based connectivity, which assumes that the connectivity
produces a clustering of phase values at each time-frequency point relative to an
experiment event across the repeated trials (Cohen, 2014). The metric averaging
across time is assuming that connectivity results from phase angle differences
being clustered over time. This is a subtle but important distinction. This
distinction between calculating connectivity across trials versus time has
implications both for analysis and interpretation.
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2111 Coherence

One of the most popular phase-based metrics is to assess the coherence of two
time series. Spectral coherence measiures coupling between two signals at a
specific frequency and could be conderded as correlation in the frequency
spectral domain. Coherence is seems to be influnced by strong increases or
decreases in power due to its combination of power information. For instance, if
the connection increases but the power of signals simultaneously decreases,
coherence might give a biased result (Lachaux, Rodriguez, Martinerie, & Varela,
1999). Consider two signals x(t) and y(t), their coherence is computed as follows:

NGl

ol =5 5, D W
where S, is the cross-spectral density of two signals, which are calculated from
the Fourier transformed signals: X(f) and Y(f).

Sxy () = X(HY (T, )
where T indicate the conjugate transpose of a matrix. Sy, (f) and S, (f) are the
auto-spectral densities for each signal. Coherence is normalized to a scale from 0
to 1, with 1 being perfect coupling and 0 representing complete independence.
Note that the calculation of denominator is simply the product of the average
Fourier power of signals and the averaging can be done over trials and time
points, depending on whether you are computing coherence over time or trials.
For example, in the event-related data we calculated the time-frequency spectral
coherence over trials, but in the ongoing data recorded during music-listening
we computed the frequency-specific coherence over time in a temporal sliding
window, analogous to the way the FFT was computed in sliding time segments
in the short-time FFT method, resulting in time-frequency connectivity.
Coherence has been widely used to measure connectivity in M/EEG study,
which is largely the success of dynamic imaging of coherent sources methods.

21.1.2 Phase locking value

It has been argured that the spectral coherence could produce a biased result for
the measurment of phase coupling between two singlas (Lachaux et al., 1999). As
we mentioned above, this is because calculation of cohenrence is influnced by the
power amplitude, or covariance between two signals especially while the signal
to noise ratio is low. The phase locking value (PLV) is an alternative metric to
precisely measure the phase relation between two signals (Lachaux et al., 1999).
Let’s consider two signals x(t) and y(t) from two electrodes or regions. These
signals are band filtered to band-limited signals and their instantaneous phase of
each signals are defined as ¢,(t) and ¢, (t), respectively. The phase is typically
calculated using Wavelet transform or Hilbert transform. Then, the phase angle
differences between two signals are computed as 8(t) = ¢, (t) — ¢, (t) at each

time point. PLV can be obtained by
T

1 .
PLV = ?Z elf® (3)

t
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where T is the number of time points within a time window or trial. Equation (3)
calculates the PLV averaging across time, which is typically used in resting-state
or naturalistic task. As we mentioned, we can also examine the consistent phase
angle difference over trials by averaging over the repeated trials

N

1 .
PLV(¢) = Nz elftn) (4)

n
where 7 indicates the index of trial and N represents the number of trials. PLV

over trials is typically used in the repeated well-controlled stimulus. It gives good
evidence for task-related modulation in functional connectivity since
synchronization must be in the same phase configuration on each trial. In
addition, PLV over trials has a high temporal resolution due to the calculation at
each time sample individually. The PLV is preferred over trials if you have
assumption relating the temporal courses of connectivity over tens to hundreds
of milliseconds.

2.1.1.3 Phase Lag-Based Measures

Because affects of field spread are generated instantaneous within measure
capabilities of M/EEG acquisition and within the frequency range typically
examined in M/EEG research (Stinstra & Peters, 1998), fake connectivity results
that are caused by two sensors measuring activities from the identical source
would possess phase lags of zero or m. Thus, it is reasonable to reduce spurious
connectivity due to field spread or volume conduction by removing zero-phase-
lag connectivity. There have already been existing a few phase-based
connectivity metrics that are insensitive to zero-phase-connectivity, including
imaginary coherence (Nolte et al.,, 2004), phase-lag index (Stam, Nolte, &
Daffertshofer, 2007) and weighted phase-lag index (Vinck, Oostenveld, Van
Wingerden, Battaglia, & Pennartz, 2011). These measures are not sensitive to field
spread or volume conduction (For the reminder of this chapter, we used signal
leakage instead of field speard and volume conduction for convenience),
although in a few cases they might still be affected by mixed sources (Peraza,
Asghar, Green, & Halliday, 2012).

Imaginary coherence was proposed as a means of using spectral coherence
without concern for spurious connectivity due to signal leakage. The calculation
of imaginary coherence uses almost the same equation as that for spectral
coherence, except that the imaginary part of spectral coherence is performed
before the amplitude.

The phase-lag index (PLI) measures the extent to which a distribution of
phase differences is distributed across positive or negative sides of imaginary
axis on the complex plane. The idear is that if spurious connectivity arises from
signal leakage, the phase differences would be distributed around zero radians.
In contrast, non-signal-leakage connectivity would generate a phase distribution
that is predominantly across the positive or across the negative side of the
imaginary axis. Thus, the PLI is obtained by averaging the sign of the imaginary
part of the cross-spectral density, instead of averaging the whole vectors. If all
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phase differences are on one side of the imaginary axis, the PLI will be high. In
contrast, if half of the phase differences are positive and half are negative with
respect to the imaginary axis, the PLI will be zero. The PLI can be computed as

PLI = %i sign <1m (Sxy(t))) , (5)

where Im (Sxy(t)) is the imaginary part of the cross-spectral density at time

point (or trial) t and sign represents the sign of values (+1 for a positive value and
-1 for a negative value and 0O for zero value). The PLI is less sensitive to outliers,
but it is also less sensitive to the amount of clustering in the distribution. In other
words, if the phase values are spread out in polar space but all on one side of the
imaginary axis, PLI will still be high.

The weight PLI (WPLI) is an extension of the PLI, where phase differences
are weighted in terms of their distance from the real axis (Vinck et al., 2011). It

can be calculated as

%Z{ﬂ |1m (Sxy(t))| sign <Im (Sxy(t)))

72 [ (5., 0)|
where the numerator is embedded in equation (6), but this equation can also scale
the sign of the phase by the amplitude of the imaginary factor (Vinck et al., 2011).
Therefore, vectors farther away from zero radians have a greater impact on the
connection estimation. As coherence, the weighted term will cause the scaling of
wPLI values. Thedenominator will then unscale the final results.

Similar to other phase-based measures, wPLI and PLI can be calculated over
the repeated trails at each time or over time points within each segments. Noted
that two limitations should be considered when phase-lag-based measures were
used. First, if the two signals have slightly different frequency concentrations,
PLI could fluatuate rapidly as the phase differences spin around polar space.
Another limitation is that condition differences in phase-lag-based metrics can
reflect either differences in connectivity or differences in the preferred phase of
the connectivity.

wPLI =

: (6)

2.1.2 Amplitude-based metrics

Amplitude-based (or power-based) functional connectivity analysis provide a
series of opportunities to examine connectivity over time and frequency. The
phase-based measures introduced above assume that the connections are
instantaneous and at the same frequency. Such constraint is not required in
amplitude-based measures, which them more flexible for hypothesis-driven and
exploratory analysis. Many studies that use amplitude-based measures of band-
limited signals in M/EEG have successfully derive the functional networks,
which are closely similar to the functional networks observed in fMRI.
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21.21 Envelope correlation

The amplitude-based methods typically depend on bivariate correlation
coefficients. Here, we use Pearson Coefficient for assess the correlation between
envelops of band-limited signals. The Pearson correlation coefficient is a widely
used correlation method and is derived as the covariance of two signals x and v,
normalized by the variance of each signal.
v ex)(yt")

The superscript T indicates the matrix transpose. This equation is similar to the
calculation of spectral coherence, which suggests that the covariances normalized
by variances provide a general approach to measure bivariate relationships in
many cases.

We first need to calculate the amplitude envelop of signals using any time-
frequency analysis you prefer. The most widely used is the Hilbert transform,
which has been well descripted in the literature (O'Neill, Barratt, Hunt, Tewarie,
& Brookes, 2015). In brief, the complex analytic signal is first computed as

T

z(t) = x(t) + iH(x(1)), (8)
where H indicates the Hilbert transform and is defined as
1(” x(t)
H(x(®) _Ef_oot—udu' 9)

Then, the signal envelop time series can be obtained by

E(x(®) = J (x®)" + (H(x®))

The envelop time series can then input to the equation to compute the correlation
coefficient between spatially separate regions. Like other connectivity methods,
the main parameter to choose is the duration of the sliding window applied to
estimate the correlation coefficient. The time window should be at least one cycle
of the frequency band. For task-related data, you should use time windows of at
least two to four cycles, and this number should increase with higher frequencies
and with longer task paradigms. For ongoing data, you could divide the data into
nonoverlapping segments of a few seconds to calculate a correlation coefficient
at each segment.

2

(10)

2.1.2.2 Partial correlation

Partial correlation enables to measure the linear or monotonic relationship
between two signals in the same time keeping constant a third signal. In the case
of M/EEG amplitude-based measures, partial correlation could beusefull for two
considerations. First, we can use them to valid the hypothese about networks
consisting of more than two regions or electrodes. Another is that we could use
partial correlation to reduce the signal leakage during amplitude-based
connectivity. They have been well descripted in the elsewhere (Cohen, 2014) and
we here do not introduce them in detail.
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2.2 Dynamic functional connectivity techniques

A great number of previous studies have well descripted the spatial signatures
of neural connectivity (Bastos & Schoffelen, 2015; Fox & Raichle, 2007; Friston,
2011; O'Neill et al., 2018; Schoffelen & Gross, 2009), however most of them have
not considered the temporal structure of the data. For example, when and how
the amplitude of connections between spatially separate regions or electrodes
fluctuates across the experimental stimuli. A dominant proposed mechanism is
that the neuronal communication between regions across the whole brain is the
core of human cognition (Fries, 2005, 2015). Such communication was assumed
to be coordinated by neural oscillations at certain frequencies (i.e.
communication through coherence). Since such modulation of neural oscillations
is very rapidly (Bola & Sabel, 2015; Pfurtscheller & Da Silva, 1999), it thus
accompanies that connectivity should also vary quickly, especially in response to
sensory and cognitive events. It would be crucial for an appropriate
characterization of dynamic connectivity to allow us to clarify the essence of how
the functional connectivity supports cognitive operations. For instance, the time-
locked neural response in classical experiments generally lasts on the scale of
hundreds of milliseconds to a few seconds. The formation of these stimuli-related
responses is important for recognizing them as top-down or bottom-up, or as the
feedforward or feedback process (O'Neill et al, 2018). Static functional
connectivity analysis has been commonly used to examine the communication of
brain areas during a specific cognitive process (Liddle et al., 2016; Peled et al.,
2001). However, compared to dynamic connectivity measures, such static
analysis is not time-resolved or frequency-resolved and cannot untangle the
route of information processing in the human brain. Thence, a dynamic
connectivity technique could provide a deep insight to the integration of
information processing in the brain.

Although a large number of studies for functional connectivity have been
explored using fMR], it is not adequately time-resolved to address the issue of
network dynamics due to slow nature of the hemodynamic signal (O'Neill, 2016;
O'Neill et al., 2018). However, due to its excellent temporal resolution and good
spatial coverage, electrophysiological modalities (e.g. M/EEG) provide
opportunities for measuring neuronal oscillations and directly assessing rapid
changes in neuronal coherence, which is the core of brain dynamic
communication. These modalities are in a distinct place to probe the shortest time
scale of functional connectivity, especially M/ EEG measurements can cover most
of the cerebral cortex. However, until only recently we could reliably do such
work with non-invasive ways over the whole human brain. Therefore, we could
interrogate how the functional networks form and dissolve temporally by
examining the dynamic connectivity in the brain on a rapid time scale that is
available in electrophysiological data.
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In this section, we introduce popular methods for tracking dynamic

functional connectivity, especially those techniques applying in non-invasive
M/EEG data.

2.2.1 The sliding window approach

The sliding window framework is a simple but fundamental way to examine
dynamic connectivity by using connectivity metrics mentioned last section
within a time segment. As shown in Figure 2, the brain signals are divided into
temporal windows with length d, so that a window centering on time point ¢ has
boundaries with +0.5d. Then, the window is shifted forward in time a certain
step s, connectivity is measured in this new window, and the procedure is
repeated, resulting in a time course of connectivity. The advantage of the sliding
window method is that most static connectivity metrics could be compatible with
it with little modification due to its resemblance to the static analysis, which
makes it a flexible method. However, the main parameter to select is the length
of window, which is not trivial. In other words, different connectivity metrics
require different lengths to evaluate functional connectivity.

I Slide window in time
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FIGURE2  Schematic diagram of sliding window approach to estimate connectivity dy-
namic. Connectivity is estimated over a width of d =1s. The window is ena-
bled to move in steps (here, s = 1) repeatedly, resulting in a time courses of
connectivity. This example demonstrates a period of high anticorrelation be-
tween signals A and B, followed by high positive correlation.
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2211 Identification of repeating patterns of connectivity

When examine dynamic connectivity, it is common to assess connectivity
between all pairs of brain regions within lots of time windows. This requires for
an automatic approach to assist analysis of large data due to the estimates of
massive connectivity matrices. In the last decade, lots of approaches have been
developed to extract features from massive connectivity matrices to find
interpretable and functionally meaningful network patterns. Many of those
approaches rely on the assumption that functional connectivity is expressed in
repeating or recurrent temporal or spatial patterns (O'Neill et al., 2018).

2.21.1.1 K-means clustering

K-means clustering aims to partition observations ( here typically adjacent
matrices) into groups or clusters in which each matrix belongs to the cluster with
the nearest mean. Here, a cluster will include connectivity maps with proximal
topologies across time (or recurrent spatial patterns of connectivity). K-means
categorize each snapshot of connectivity into one of a predifined number of
‘states’, in which each state corresponds to a set of connection patterns. This
method allows us to study the connectivity dynamics by collapsing down whole
adjacent matrices into several networks. For repeated stimili task, each state of
each trial is followed with a binary time course from k-means clustering,
represting whether a state was active or inactive. These results sometimes are not
interpretable, but if we average each time course across trials, so that we can
obtain a probabilistic time course, revealing the likelihood of any network
emerging at a specific time point. This technique has widely used to fMRI data
since it was proposed by (Allen et al., 2014). It is subsequently applied to MEG
data(de Pasquale, Della Penna, Sporns, Romani, & Corbetta, 2016; O'Neill, Barratt,
etal., 2015; O'Neill, Bauer, et al., 2015) and EEG data (Hassan et al., 2015; Mheich,
Hassan, Khalil, Berrou, & Wendling, 2015). It should be noted that there exist
several limitations in K-mean clustering. One is that the number of clusters
requires to be pre-deifined. Another is that K-means caregorises all the
connectivity matrices derived from all the windows into multiple states, in which
only one is active at a given time point. In some cases, this mignt not an
appropriate assumption that all states are mutually exclusive (O'Neill et al., 2018).

2.2.1.1.2 Matrix decomposition

Matrix decomposition (e.g., ICA), an unsupervised machine learning technique,
is another popular method to extract network patterns via finding common
activated time courses in M/EEG (Brookes, Liddle, et al., 2012; Brookes, Woolrich,
et al, 2011, Hall, Woolrich, Thomaz, Morris, & Brookes, 2013; Knyazev,
Savostyanov, Bocharov, Tamozhnikov, & Saprigyn, 2016; Koelewijn et al., 2017;
Koelewijn et al., 2015; Luckhoo et al., 2012; Nugent et al., 2017; Nugent, Robinson,
Coppola, Furey, & Zarate Jr, 2015; Ramkumar, Parkkonen, Hari, & Hyvarinen,
2012; Ramkumar, Parkkonen, & Hyvérinen, 2014). ICA has been applied to
temporal-spatial data to find spatial patterns (functional networks) based on the
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fact that voxels or electrodes of each pattern share the similar timecourses.
Differently from using ICA to activation timecourses, alternative strategy is to
apply ICA to a collection of connectivity timecourses (e.g. obtained from sliding
windows) to find functional networks based on shared modulation in
connectivity (O’Neill et al, 2017). The number of extrated connnctivity
timecourses representing a dynamic process (time evolution) for each
independent network would be lower than the number of original connectivity
estimated. ICA can do this because it extracts common connectivity timecourses
over a set of connections between resiongs, which enables to identifying spatially
overlapped networks if each connectivity topography had a distinct temporal
nature (see figure 3).

\

FIGURE3  The schematic diagram of ICA performing dynamic FC analysis. Dynamic
FC matrix can be obtained based on sliding window procedure and then con-
catenated across time (or subject). Temporal ICA was here applied to extract
connectivity patterns. Each row of the estimated source matrix represents the
temporally independent process of FC, collapsed over all connections. Each
column of the mixing matrix expresses the contribution of each individual
connections to the temporally independent component, which can be
thought of as a pattern of FC.

Other approaches based on matrix decomposition contain principal
component analysis (Leonardi et al., 2013; Tang, Lu, & Yang, 2019), dictionary
learning (Grandjean et al., 2017), and dynamic community detection (Al-sharoa,
Al-khassaweneh, & Aviyente, 2018; Li et al., 2019; Martinet et al., 2020; Vaiana,
Goldberg, & Muldoon, 2019). Dynamic community detection expands common
used community detection in static networks, which has been proved to uncover
similar functional networks derived from ICA (Crossley et al., 2013). The key idea
that an optimization is implemented on a graph-theory function, referred as
modularity, which measures the ratio of within community connections to
between community connections (Mucha, Richardson, Macon, Porter, & Onnela,
2010). Every node of the network is thus clustered into a specific community.

2.2.1.1.3 Tensor decomposition

Tensor decomposition, a high order extension of matrix decomposition, can be
used to reduce dimensions of multi-way data (e.g. from spectral, spatial and
temporal modes of data) and extract low-dimensional, interacted descriptors. For
example, in a traditional EEG study, three tensor modes could be time, frequency,
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and electrodes (Morup, Hansen, Herrmann, Parnas, & Arnfred, 2006). In
neurophysiological measures, the different modes could correspond to neuron,
time, and trial (Williams et al., 2018). Here for studying connectivity, tensor
component analysis (TCA) has been increasingly used to a variety of connectivity
data structures (Escudero, Acar, Fernandez, & Bro, 2015; Mahyari & Aviyente,
2014; Ozdemir, Bernat, & Aviyente, 2017; Pester, Ligges, Leistritz, Witte, &
Schiecke, 2015; Spyrou, Parra, & Escudero, 2018). Such technique has recently
been used to M/EEG data and to derive the frequency-specific network
dynamics during repeated task (Zhu, Liu, Ye, et al., 2020) and naturalistic stimuli
(Zhu, Liu, Mathiak, Ristaniemi, & Cong, 2019). In these cases, TCA was applied
to atlas-based M/EEG data over connections, time and frequency to derive
separate components with low-dimensional features, corresponding to a pattern
of FC with rapidly temporal dynamics and specific spectal mode. Figure 4
demonstrates the schematic diagram of TCA examining such multi-way dynamic
FC.
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FIGURE4  The schematic diagram of tensor component analysis (TCA) for multi-way
dynamic FC. Temporally and spectrally resolved connectivity was calculated
using time-frequency estimate (e.g. wPLI) based on sliding window proce-
dure, resulting in connection data in tensor format. Tensor decomposition
(e.g. with CP model) was performed to extract low-dimensional, interacted
descriptions of connection data: connectivity factor, reflecting spatial patterns
of FC; temporal factor, reflecting rapidly time-evolving of the FC; spectral
factor, reflecting spectral signatures of FC.

However, the unresolved issue remains whether all these different methods
of extracting repeating functional modes that capture similar or complementary
spatio-temporal information. Are all methods sensitive to FC changes that occur
in the same time scale, or is it necessary to apply pattern recognition techniques
to identify FC modulations that occur in different time scales? These issues
should be addressed in future study.

2.2.1.2 Statistical inference

After the acquisition of connectivity patterns, it might be most difficult to
determine quantitatively whether or not its temporal change arises from a
genuine nonstationary process, or is only due to stochastic noise. Indeed, many
shreds of evidence demonstrated that a connection induced by a stationary
process could be artificially deemed dynamic due to changes in the signal to noise
ratio (SNR) of experiment data (Betzel, Fukushima, He, Zuo, & Sporns, 2016;
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Hindriks et al.,, 2016, Lindquist, Xu, Nebel, & Caffo, 2014). Thus, effective
statistical testing should be used to evaluate which changes in connectivity
patterns are really meaningful. Due to a large number of time points, we need to
test, a statistical test of dynamic connectivity data is much more complicated than
static connectivity.

In a task-related setting where time locking can be implemented, a solution
of the non-parametric statistic (Maris & Oostenveld, 2007), widely used to test for
significant modulation in the power of M/EEG, could be applied to assess
connectivity dynamics. The key idea is that the trial-averaged time courses of
connectivity are significantly tested, generating a time-evolving non-parametric
null distribution though adapting pseudo-trials. For instance, the randomized
trial onset time courses are used to generate average time courses of pseudo-trials,
which enable us to examine whether the beginning of a trial or onset of a stimulus
significantly modulates the levels of connectivity. This strategery could also be
used to other null-hypotheses, such as assessing the differences in functional
connectivity between groups, in which shuffled assigning each subject to one of
two groups is used to generate the null distributions. If time courses of
connectivity are derived using matrix/tensor decomposition, a similar non-
parametric technique based on phase-randomization or sign flupping can be
performed (Brookes et al., 2014; Hunt et al., 2012; O’Neill et al., 2017; Winkler,
Ridgway, Webster, Smith, & Nichols, 2014; Zhu, Liu, Ye, et al., 2020). The core
idea is to produce a surrogate time course by phase randomization of time
courses or randomly choosing parts of components with multiplying by -1 and
then examine the trial averaged components. A null distribution could be
generated by repeating this process. If a temporal change in functional
connectivity was not preserved over all participants, then the surrogate temporal
courses would possess the same amplitude as the ture trial-average time course.
In turn, if the changes were ture, the magnitude of temporal courses of surrogate
would be significantly diminished and thus the real time courses would be
exceeding the threshold of null distribution.

2.2.2 Hidden Markov Models

Distinct from categorizing many connectivity matrices into several states, the
Hidden Markov Model (HMM) directly exploits data to infer discrete multiple
states (Rabiner, 1989). Instead of measuring connectivity in a sliding window
way, the idea of HMM is that all the observations belonging to same state are put
together effectively to descript networks by performing estimation at the state
space (Baker et al., 2014; Vidaurre, Hunt, et al., 2018; Vidaurre et al., 2017). This
therefore has an advantage of avoiding the requirement of pre-defining the
length of sliding window. The inferred state is descripted by its spatial signature
(e.g. the mean and covariance) and temporal signature (e.g. the activation time
courses) at source level. HMM inference performing on observed data estimates
the probability that each state is active at each time point of the multivariate time
series and describes the probability distribution of each state.
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Before HMM inference, the number of states should be determined. Many
techniques have been introduced to estimate the optimal number of states (Beal,
Ghahramani, & Rasmussen, 2002). We here do not present it but the review can
be found elsewhere (O'Neill et al., 2018). Compared to these data-driven
determination approaches, manual confirmation of results is suggested to make
sure that the inferred states are at least interpretable. HMM has many variations
to use based on the observation model. For example, Gaussian observation model
was used to characterize the envelop of MEG data at resting state over the entire
cerebral cortex (Baker et al., 2014). This type of HMM characterizes the state with
a mean representing the average amplitude activation and a covariance matrix
representing the functional connectivity based on envelop correlations. The
result demonstrates that the resting-state networks are fast transiently forming
and dissolving. To utilize the phase information, another version based on
multivariate autoregressive models was proposed, call HMM-MAR (Vidaurre et
al., 2016). This model performs on raw data rather than amplitude envelops,
enabling to exploit the phase information. The inferred states are therefore
characterized not only by amplitude but also by phase-coupling. Another benefit
of this model is that the underlying descriptors of the data could be spatially,
temporally, and spectrally resolved. The HMM-MAR has been proved to descript
rapid spectrally resolved changes in somatosensory regions during a motor task
(Vidaurre, Abeysuriya, et al., 2018). Another alternative is proposed to reduce the
model complexity of HMM-MAR based on a time-embedded transformation of
the data in conjunction with a simple Gaussian observation model, called TDE-
HMM (Vidaurre, Hunt, et al., 2018). TDE-HMM could identify states with
particular auto-correlation and non-zero lag cross-correlations that approximate
the state-specific power spectra and phase-locking information accessible with
the HMM-MAR. This novel model has been successfully proved to descript the
frequency-specific network dynamics at rest (Vidaurre, Hunt, et al., 2018).



3 AIMS OF THE THESIS

The aim of this thesis is to develop methodology to allow us to analyze network
dynamics using M/EEG data recorded during a task performance, especially
during naturalistic music listening, with the focus on spatially, temporally and
spectrally resolved functional connectivity. Therefore, our goal here is extending
the analysis frameworks of M/EEG studies from simplified well-controlled
paradigms to naturalistic stimuli approximating real-life situations. The main
techniques used in this thesis are tensor component analysis, connectivity
measures and statistic inference. In addition, the work is to shed light on the
oscillatory mechanisms of functional networks observed in fMRI by examining
the spectral signatures of connectivity. The specific aims of the individual studies
are as follows

1. To examine whether tensor decomposition could be used to extract induced
brain dynamics at source level data during a conventional well-controlled
experiment. (Publication I)

2. To develop an approach combining spatial Fourier ICA and musical feature
extraction to reveal spatial and spectral brain activity during music listening.
(Publication II)

3. To develop an approach to find the differences of functional connectivity
during naturalistic speech comprehension. (Publication III)

4. To examine whether tensor decomposition could be used to extract spectra-

specific connectivity patterns during a conventional well-controlled experiment.
(Publication IV)

5. To develop an approach based on tensor decomposition to derive the
frequency-specific functional connectivity during naturalistic music listening.
(Publication V)



4 SUMMARIES OF STUDIES

4.1 Measuring the task Induced oscillatory brain activity using
tensor decomposition (Publication I)

Yongjie Zhu, Xueqiao Li, Tapani Ristaniemi and Fengyu Cong. (2019, May).
Measuring the Task Induced Oscillatory Brain Activity Using Tensor
Decomposition. 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (pp. 8593-8597), Brighton, UK.

41.1 Motivation

The electrophysiological basis of brain functional networks is not yet understood
via analyzing fMRI data, but M/EEG could offer an opportunity to examine such
neural underpinnings of functional networks in the human brain. The EEG is
composed of activities of a set of generators producing rhythmic activities in
multiple frequency bands. During a sensory stimulus, these generators are
synchronized and work together in a coherent style. These coupling activities
give rise to ‘evoked” or ‘induced’ oscillations (Basar, Basar-Eroglu, Karakas, &
Schiirmann, 1999; Basar, Schiirmann, Demiralp, Basar-Eroglu, & Ademoglu,
2001). The evoked oscillations are phase-locked to specific event and the induced
are not. To produce the data representation of evoked oscillations, single trial
EEG data are first averaged across trials and then converted into time-frequency
representation through wavelet analysis, resulting in a multi-way data
representation. The analysis for such evoked oscillation based on tensor
decomposition has been studied (Cong et al., 2015; Cong, Phan, et al., 2013).
However, tensor decomposition has not yet been used to analyze the induced
neural oscillations. Here, we attempt to examine the induced brain activity
during a task execution using tensor decomposition.
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4.1.2 Methods

We used one group of EEG data recorded during a task of irony comprehension
(Zhu, Li, Ristaniemi, & Cong, 2019). In brief, we applied one-sentence spoken
lines and colored pictures as stimuli. If the keyword in commenting sentence was
semantically congruent with the content of the contextual pictures, the trail
provided a neutral meaning. We analyzed the source-level EEG data to find the
induced neural oscillations. The time-frequency representation of single-trail
source-reconstructed EEG data constructed a third-order tensor with three
factors of times*trails, frequency, and source space. non-negative Nonnegative CP
decomposition (NCPD) was performed to identify the temporal, spectral, and
spatial changes in electrophysiological brain activity. Statistical testing based on
phase-randomization was implemented to examine the task-modulated brain
components. Figure 5 demonstrates the steps of analysis pipeline.
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FIGURES5  The schematic illustration of the pipeline.
4.1.3 Results

The components extracted by NCPD contains three interacted factors, i.e. spectral,
temporal, and spatial factors. Two components showing significant task
modulation are regarded as induced neural oscillations. The first row of Figure 6
shows that the Delta brain oscillation emerged in the right temporal-occipital
junction during 800 ms after the onset. The second row of Figure 6 demonstrates
that the Theta rhythm emerged in the left frontal area corresponding to Broca’s
area, which is significantly related to language cognition, during 400 ms after the
onset.
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FIGURE 6  Results of experiment data. A: spatial maps of extracted components. B:
Spectral factors of the components. C: Time courses of components, averaged
across trials in all subjects (black line). The grey shaded region represents the
null distribution (pcorrectea < -05) based on a hypothesis that the response is
not time locked to the tasks.

4.1.4 Discussion and conclusion

This work presented an approach based on NCPD to identify task-induced
neural oscillations. It enables to characterize the brain oscillatory patterns that
transiently form and dissolve to support a cognitive process during a simple task.
The presented method was applied to EEG data recorded during a task of irony
comprehension, showing two components related to the task. One shows that the
Delta oscillations are elicited in Broca’s region after 400 ms of stimuli onset.
Another demonstrates that Theta rhythm is related to comprehension of irony in
right temporal-occipital junction after 800 ms of the onset. These neural
oscillations emerging in those brain areas could be expected since previous
studies have also reported that the similar brain regions are related to humor
comprehension (Mobbs, Greicius, Abdel-Azim, Menon, & Reiss, 2003; Shibata et
al., 2017).

During a cognitive process, different neural oscillations would be emerging
at different brain areas at different time, resulting in a complex data to analyze.
For such data, the introduced method combining wavelet transform with tensor
decomposition offer a way of extracting spectral, spatial, and temporal
information linking to stimuli.
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4.2 Spatial ICA reals freuency-dependent brain networks during
musicl listening (Publication II)

Yongjie Zhu, Chi Zhang, Hanna Poikonen, Petri Toiviainen, Minna Huotilainen,
Klaus Mathiak, Tapani Ristaniemi and Fengyu Cong. (2020). Exploring
Frequency-Dependent Brain Networks from Ongoing EEG Using Spatial ICA
During Music Listening. Brain Topography, 33, 289-302.

4271 Motivation

Alluri et al. examined the functional networks of musical features during a
naturalistic paradigm, where subjects continuously listened to an entire music
clip while their fMRI data were recorded (Alluri et al., 2012). They observed
larger-scale brain responses in cognitive, motor, and limbic brain networks
during continuous processing of low-level (timbral) and high-level (tonal and
rhythmical) acoustic features. However, the oscillatory mechanism of these
functional responses is not fully understood since the fMRI measuring BOLD
signals cannot directly access to the electrical processes. Thus, EEG data were
recorded in the same music listening environment, and we attempted to exploit
the direct electrical activity measurements of EEG modality to address this issue.
In addition, applying spatial ICA in Fourier domain, called spatial Fourier-ICA
(Ramkumar et al., 2014), allows us to examine the frequency-specific brain
networks emerging from dynamic processing of musical features.

4.2.2 Methods

We collected EEG data of 14 right-handed and healthy adults with BioSemi
electrode caps (64 channels) during a 512 s long musical clip of modern tango
previously used in the study (Alluri et al., 2012). After preprocessing of EEG data,
Short Time Fourier Transform (STFT) were performed with 3 s length and 2s
overlap of the adjacent windows. The source-lever data were then obtained using
source reconstruction. Spatial ICA were applied to time by frequency/voxel data
to extract independent spatial-spectral patterns and its temporal courses.
Simultaneously, five long-term musical feature time series were calculated based
on the 3-s-length and 2-s-overlaping of windows used in the computational
analyses, resulting in the same sampling rate to temporal courses of EEG. This
allows us for correlation analysis between their temporal courses to determine
which independent spatial-spectral component was significantly modulated by
musical features. The spatial maps of retained components (significantly
correlated with music) from all subjects were then clustered into several groups
to examine the consistency between subjects. We visualized the centroid maps of
clusters, and the spectra of their included components (see figure 7).
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FIGURE7  The schematic illustration of the pipeline combining spatial Fourier-ICA with
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A. Spatial Map B. The number of C. The normalized

ICs & subjects spectrum of each IC
1 Beta
band

-

T otal comps
[ Total subs

Magnitude

Flu Pulse

Key Mode

20 25 30 35
reqquency (Hz)

Centroid Enl Clarity

FIGURE 8  The clustering results. A. the centroid of spectral profiles in cluster. B. the
number of ICs and subjects involved in the cluster. C. the spectra of each
components belonging to this cluster.

4.2.3 Results

We obtained three spectral-spatial patterns significantly correlated with music
features. First, there exist brain responses with involved Beta oscillations in
bilateral superior temporal gyrus (STG). This Beta-dependent brain pattern
seems to be linked to dynamic processing of musical features such as Fluctuation
Centroid and Key (Figure 8 I). Second, row II of Figure 8 shows relatively large-
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scale brain activity in bilateral visual regions. The spectrum of this pattern is
dominated by Alpha oscillations focusing on 10 Hz with several independent
components of Delta. The last one is the increased activity associated with
musical features in bilateral prefrontal gyrus (Figure 8 III). There regions are
recruited with spectrum involved in both Beta and Delta rhythm.

4.2.4 Discussion and conclusion

We observed Beta-specific brain networks in the bilateral STG emerged for
processing musical features. This bilateral STG were mostly recruited during
freely music listening, which was engaged in musical feature processing.
Interestingly, Beta oscillations were increased in these brain regions that were
observed in previous fMRI study. Here, Beta rhythm related to motor and
rhythmic processes were involved, because listeners might voluntarily engage in
mental activities related to motor. Alpha oscillatory visual networks were also
found. Alpha oscillations play an important role in basic cognitive process, which
is linked to suppression and selection of attention. Thus, this could be the reason
that the alpha-specific power over visual cortices was larger when attention was
focused on the auditory stimuli. In addition, prefrontal cortex offers the
structural basis for multiple higher cognitive functions and oscillatory dynamics
of prefrontal cortex provides a functional basis for flexible cognitive control of
goal-directed behavior. Delta and Beta oscillations are crucial to predicting the
occurrence of auditory targets. That may be why we observed delta-beta rhythms
in prefrontal cortex. These results imply that brain networks for musical feature
processing might be frequency-specific.

4.3 Distinct Patterns of Functional Connectivity During the Com-
prehension of Natural, Narrative Speech (Publication III)

Yongjie Zhu, Jia Liu, Tapani Ristaniemi and Fengyu Cong. (2020). Distinct
Patterns of Functional Connectivity During the Comprehension of Natural,
Narrative Speech. International Journal of Neural Systems, 30(3), 2050007-2050021.

4.3.1 Motivation

Recent studies show that when people successfully comprehend a narrative
speech, a stable EEG component emerges in the centro-parietal region of the
brain, but it does not appear when listening to meaningless speech (Broderick,
Anderson, Di Liberto, Crosse, & Lalor, 2018; Di Liberto, O’Sullivan, & Lalor,
2015). However, it is not clear whether specific patterns of functional connectivity
would emerge in the brain when successfully comprehending a story.
Additionally, Shine et al. applied principal component analysis (PCA) to examine
the integration of brain functional networks during multitasking, and found that
low-dimensional representations were associated with dissociable cognitive
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functions and specific patterns of network-level topology (Shine, Breakspear, et
al., 2019; Shine, Hearne, et al., 2019). Based on these studies, we would like to
adopted PCA techniques to examine the functional network configuration
during the comprehension of narrative speech.

1. Static FC analysis
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FIGURE9  The pipeline of analysis. Before the calculation of FC, leakage reduction was
performed via orthogonal correction. For static FC analysis, PCA was used to
subject-concatenated adjacent matrices (I). For dynamic FC, PCA was used to
temporally concatenated adjacent matrices. The condition-specific spatial
patterns were determined by similarity analysis with static FC (IL.B). The me-
dian trajectories were tested between conditions (II.C).

4.3.2 Methods

We analyzed the 128-channel EEG data collected under two conditions: listening
to natural, narrative audiobook and the same audiobook in a time-reversed
fashion (Broderick et al., 2018). We used the Hilbert-envelop-based correlations
between pairs of brain region signals derived from source-level EEG as metric of
connectivity. We first examined the static functional connectivity (FC) that was
computed across whole time and PCA was performed on the adjacent matrices
that are concatenated across subjects (Figure 91). We then analyzed the dynamic
FC based on a sliding window technique. PCA was also applied to temporally
concatenated dynamic FC across subjects/runs (Figure 9II). We examined the
differences in trajectory of temporal evolutions of extracted FC (characterized by
principle components) between two conditions (speech vs reversed speech).
Finally, we examined the role of time-locked events on FC dynamics by
measuring the similarity between temporal dynamic FCs over conditions and
runs. Please see (Zhu, Liu, Ristaniemi, & Cong, 2020) for more details.



43

4.3.3 Results

We observed a specific FC patterns characterized by the first principal
component, which explained 39.8% of the variance (Figure 10). It can differentiate
the normal speech listening condition from the time-reversed speech condition.
Its projection coefficients were significantly different between two conditions.
This condition-dependent pattern explained the specific changes in FC under the
speech comprehension. We found that the dynamic FC analysis also shown
condition specificity over time, especially when subjects successtully
comprehended both the same and different speech.
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FIGURE 10 The results of FC analysis. I.A. Explained variance by each component (black
line) and surrogates (gray line). I.B. The projections of first two components
and their boxplot (I.C), and FC profiles (I.D&E). II.A. Condition-specific FC
and similarity with static FC (IL.B). IL.C. The differences in median orbit.

4.3.4 Discussion and conclusion

The brain networks are highly dynamic and can tune spatial topology at a very fine
time-scale under a chaning environment. We here presented an analysis framework
and examined the reorganization of FC during comprehending speech. The
results shown that the pattern of dynamic FC during speech-comprehension
might be explained by a single mode of variation. Such FC pattern, during
successfully comprehending a natural speech, can track the fluctuations over
subjects, which appears as a continuous brain functional state across time.
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4.4 Discovering dynamic task-modulated functional networks
with specific spectral modes (Publication IV)

Yongjie Zhu, Jia Liu, Chaoxiong Ye, Klaus Mathiak, Piia Astikainen, Tapani
Ristaniemi and Fengyu Cong. (2020). Discovering dynamic task-modulated
functional networks with specific spectral modes using MEG. Neurolmage, 218.

4.4.1 Motivation

Human brain consists of billions of interconnected neurons that form a very
complicated dynamic system, where populations of neurons are clustered into
functional units with unique information-processing capabilities (Babiloni et al.,
2005; Hillebrand et al., 2012). Effective neural communication between theses
separate units is crucial for cognition (Salinas & Sejnowski, 2001; Siegel, Donner,
& Engel, 2012). The interactions between separate regions via neuronal
synchronization might offer a possible basis of such communication (i.e.,
communication through coherence), which means neuronal populations route
information by mediating their oscillatory patterns with the oscillations of the
receptor population at certain frequencies (Fries, 2005, 2015). Additionally,
phase-coupling between separate neuronal populations in specific frequency has
been generally accepted as a mechanism for coordinating the integration and
flow of cognitive contents (Buzsaki & Draguhn, 2004; Vidaurre, Hunt, et al., 2018).
An accumulating evidence demonstrated that such frequency-dependent phase-
coupling is crucial for task performance, in which task-related information is
delivered via phase-locking across the entire brain (Bola & Sabel, 2015; Fries,
2015). For example, MEG studies have shown that large scale functional
networks engaged in cognitive tasks involve different frequency ranges in their
coordination. In other words, functional networks demonstrate the specificity in
spectral domain. Moreover, increasing studies show that functional networks
display extremely temporally variable neuronal dynamics on rapid timescales
(Kopell, Gritton, Whittington, & Kramer, 2014), which suggest functional
connectivity is temporally non-stationary. However, few studies investigating
dynamic brain networks have simultaneously considering temporal non-
stationarity, spectral structure, and spatial signatures. We thus attempt to apply
tensor decomposition to characterize the large-scale coupling network dynamics
during traditional well-controlled task paradigms.

4.4.2 Methods

We analyzed MEG data from the human connectome project (HCP), including a
motor task and a 2-back working memory task (Larson-Prior et al., 2013). We first
calculate the time-frequency domain connectivity among spatially separate brain
regions pre-defined by cortical parcellation. Weighted phase lag index (wPLI) is
applied as a metric of measuring the connectivity due to its insensitivity to signal
leakage (Vinck et al., 2011). After measurement of wPLI at each time point and
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frequency point, we form a three-way tensor containing frequency, time, and
connection. We then perform tensor decomposition with CP model (Kolda &
Bader, 2009) to extract separate components with low-dimensional factors,
corresponding to a functional connectivity pattern with fast transient dynamics
and specific spectral mode. After CP decomposition, we attempt to determine the
task-modulated component by permutation test on its temporal courses (see

figure 11).
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FIGURE 11  The schematic illustration of the pipeline based on CP decomposition for an-
alyzing multi-way FC. CP decomposition can extract low-dimensional, inter-
acted descriptions of connection data: connectivity factor, reflecting spatial
patterns of FC; temporal factor, reflecting rapidly time-evolving of the FC;
spectral factor, reflecting spectral signatures of FC.

4.4.3 Results

For the motor task, we observed two significantly task-modulated brain
networks with distinct spectra (Figure 12). One demonstrates the connections
within the primary somatosensory and motor regions with Beta dominate
spectrum, which is modulated by the hand movement task. Another one
exhibiting connections across visual regions with low frequency spectrum is
significantly modulated by visual cues. For the working memory task, multiple
brain networks with specific spectral modes demonstrate the task modulation
(Figure 13). For example, face presentation modulates right lateralized
connections between visual and temporal areas with a spectral mode spanning
alpha band, Beta-specific motor network is related to button press execution and
other high-order cognition networks including language-related network also
emerge during working memory.
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FIGURE 12  Results of the hand movement experiments. The left side shows the results of
the right hands” movement, and the right side shows the results of the left
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FIGURE 13  Results of 2-back working memory task. A) 3D network visualization. B) Av-
erage temporal course (black line) and null distribution based on randomized
onset times (shaded areas). C) Spectral mode of the network patterns. Row I:
right-lateralized connections between visual and temporal areas with a spec-
tral mode spanning alpha band. Rows II and III: primary visual networks
with theta and high-alpha dominant spectrum. IV: connections between
right frontal areas and temporal areas related to theta band. V: Beta-specific
motor network. VI: a bilateral temporal connectivity network with domi-
nated alpha rhythm. VII: alpha-dependent right-lateralized temporoparietal
network. VIII: language-related network. IX: visual to parietal with alpha-
dominant spectrum. X: connections between left frontal regions and right
temporal regions.
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4.4.4 Discussion and conclusion

This study presents a tensor-based framework for extracting phase-coupling
dynamic networks with specific spectra. Such analysis framework enables us to
characterize transient reconfiguration of electrophysiological functional
networks at a timescale of sub-seconds when applied to MEG data of traditional
paradigms. Previous approaches of MEG-networks typically pre-select the
frequency band or the temporal window around the task onset before computing
connectivity. The current method based on CP decomposition is completely data-
driven. We validate the framework in a simplified motor task, where we
successfully identified a sensorimotor network with Beta-dominate spectrum
during finger movement and a visual network with Theta-dominate spectrum
modulated by visual cues. However, several key points should be noted. Note
that there is significant variability in the time courses of functional connectivity
across subjects due to the high temporal resolution of MEG connectivity. Such
variance is demonstrated in the averaged temporal courses across subjects.
Another limitation is that the task-modulated components were identified by
averaging their temporal courses. Such less-relaxed assumption may reject some
components probably engaged in task as a result of the inter-subject differences.

4.5 Deriving the frequency-specific functional connectivity dur-
ing naturalistic music listening with tensor decomposition
(Publication V)

Yongjie Zhu, Jia Liu, Klaus Mathiak, Tapani Ristaniemi and Fengyu Cong. (2019).
Deriving electrophysiological brain network connectivity via tensor component
analysis during freely listening to music. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 28(2), 409-418.

4.5.1 Motivation

We have applied the tensor-based framework to the traditional simplified task
experiments and successfully identified task-modulated electrophysiological
brain networks. Here, we would like to applied such framework to ongoing EEG
data collected during natural music listening to track the transient network
dynamics in a naturalistic fashion.

4.5.2 Methods

We used EEG data of 14 right-handed and healthy adults with BioSemi electrode
caps (64 channels). Source-level data were obtained from the preprocessed EEG
though source reconstruction. Whole brain was divided into 68 anatomical
regions based on an Atlas. We obtained a representative time series for each
region by defining a seed voxel. We estimate the time-frequency connectivity
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between all pairs of regions based on a sliding window method (3s duration, 2s
overlap). In each time window, we measured the wPLL All the temporal
windows result in time-frequency connectivity, as a function of time and
frequency, and construct a three-way tensor. Then, we applied the CP
decomposition on temporally concatenated tensor to extract the spatial, temporal,
and spectral factors. Five acoustic features including tonal and rhythmic features
were extracted by frame-by-frame analysis technique (3s duration, 2s overlap)
from musical audio. We performed a surrogate permutation procedure to
examine how music modulates electrophysiological brain networks (Figure 14).
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FIGURE 14 The schematic illustration of the pipeline combining CP decomposition with
musical feature extraction. Correlation analysis is then conducted between
temporal courses of musical features and TCA components to examine the
modulation of brain patterns.

4.5.3 Results

We obtained multiple brain networks with specific spectra modulated
significantly by musical features, which includes higher-order cognitive,
sensorimotor and auditory networks (Figure 15). The higher-order cognitive
brain networks such as bilateral frontal functional networks have distinct
spectral patterns. One of them is involved in low-frequency rhythms (3-8 Hz);
anther one is dominated by Beta oscillations (20-30 Hz). We also observed a 10
Hz unilateral functional networks, relating to Broca’s and temporal regions,
which are associated with semantic integration. A sensorimotor network with
Beta-dominate spectrum is modulated by Fluctuation Entropy. Several networks
mainly related to auditory regions were observed during music listening.
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FIGURE 15 The results for music-listening data. A. The modulation scores for each musi-
cal feature are computed from the temporal course and averaged across sub-
jects. Error bars represent standard errors of mean. An asterisk indicates that
the component is modulated significantly differently from surrogate data. B.
The spectral profiles are obtained from the spectral factor matrix. C. The cir-
cular phase-coupling plots and the 3D visualization of the connectivity
profiles. Each node/dot represents one brain region. I. Anterior higher-order
cognitive network with dominant delta/theta frequencies. II. Beta-specific
higher-order cognitive network. III &IV. Language-related network with dis-
tinct spectral modes. V. Beta-specific motor network.

4.5.4 Discussion and conclusion

This work presents the tensor-based framework successfully applied to natural
music listening, in which it tracks the temporal evolutions of electrophysiological
brain networks. It enables to better understand the reconfiguration of functional
networks and might provide a new insight into the characterization of temporal
and spectral dynamics of phase-coupling networks under naturalistic conditions.



5 DISCUSSION AND CONCLUSIONS

These studies in this thesis introduce novel approaches to examine the non-
stationarity and frequency-specificity of electrophysiological network
connectivity. Increasing pieces of evidence have shown that functional
connectivity exhibits dynamic behavior at the time scales of milliseconds (for
neural activity) or seconds (for cerebral blood flow), with a rich spatiotemporal
structure (de Pasquale, Corbetta, Betti, & Della Penna, 2018; Gonzalez-Castillo et
al., 2015; Khambhati, Sizemore, Betzel, & Bassett, 2018; Sadaghiani, Poline,
Kleinschmidt, & D’Esposito, 2015). Moreover, functional connectivity computed
by M/EEG has also been proven to differ across frequency bands (Bola & Sabel,
2015; Brookes et al., 2014). For such multi-way and multi-scale connectivity
analysis, we have shown that it is possible to examine the time scale on which
connectivity could be measured from minutes and seconds to sub-seconds
through exploiting the high time resolution of M/EEG. Specifically, we
presented several analysis frameworks mainly based on matrix/tensor
decomposition to assess the dynamic electrophysiological connectome during
task performance, especially naturalistic tasks. In the first study, we applied CP
decomposition to single-trial wavelet-transformed representations of EEG data
recorded in simplified paradigms, to extract the stimuli-induced oscillatory brain
activity. In the second study, by combining spatial Fourier-ICA with acoustic
feature extraction, we probed the spatial-spectral signatures of brain patterns
during continuously listening to natural music. In the third study, we examined
the connectivity dynamics during natural speech comprehension via performing
PCA on envelope-based connectivity measurements concatenated across time or
subjects. In the fourth study, we introduced a novel approach based on CP
decomposition to investigate the task-related functional networks with a distinct
spectrum during self-peace movement and working memory tasks. Then, we
extended this tensor-based method of analyzing network dynamics during
natural music listening in the fifth study.
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5.1 Methodological considerations

5.1.1 Measures of connectivity

As we mentioned, there are typically two categories of coupling methods
measuring connectivity, which concentrates on different aspects of the
electrophysiological signal. They tend to uncover different components of broad
functional connectivity profile due to for example the rich spatial and temporal
information of MEG. Envelope-based connectivity tends to better characterize
the long-range connectivity that resemble these functional networks observed in
fMRI and it has been shown to successfully duplicate results obtained in fMRI
during both task and resting states (Colclough et al., 2016). Before the increasing
interest in connectivity analysis, there was a lot of studies to explore the
relationship between the hemodynamic responses and fluctuation in amplitude
of neuronal oscillations. Subsequently, it is natural to apply amplitude-based
connectivity in M/EEG data to resemble functional networks observed in fMRI
and there have been many developed approaches based on amplitude correlation
to examine the relations. Thus, envelope-based connectivity would be a good
choice if you aimed to compare electrophysiological functional networks with
those seen in fMRIL

However, phase-based measures also play a crucial role in
electrophysiological network connectivity analysis since they have been
successfully applied in many studies. They typically rely partly on whether the
analysis is hypothesis- or data-driven. For example, if a small number of specific
connectivity patterns was hypothesized, coherence combined with correction of
signal leakage would be an appropriate option due to its maximal sensitivity to
detecting connections. On the other hand, measures of connectivity that is
insensitive to signal leakage would be a good option under the situations, where
there are no or few hypotheses. Another consideration is that averaging over
trials or time when calculating connectivity. It depends on the experiment
paradigms. For example, we used the calculation averaging over trials in the
repeated stimuli paradigms since its higher temporal resolution allows to better
track fast transient changes in connectivity, but we applied averaging over time
in naturalistic tasks because it is more sensitive to detect high-frequency
connectivity.

5.1.2 Limitations of the sliding window method

In naturalistic paradigms, the sliding window is commonly used to measure the
dynamic connectivity. We need to determine the length of the window during
sliding window and thus the crucial issue is how to select the window length.
There is a trade-off between the temporal precision and the SNR when choosing
the window length. In other words, if the length was too small, results would be
contaminated by noise; contrarily, if the length was too long, it might fail to track
fast transient fluctuations in connectivity. The optimal length would match the
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timescale of underlying variations of connectivity, but such timescale is
unknowable and might fluctuate over the time course of a task. Similar to time-
frequency analysis for nonstationary signals, a window length should depend on
the frequency band. In other words, it should rely on the number of degrees of
freedom in a time window of the signal. Some studies have already investigated
the effect of window length on dynamic analysis and introduced the instruction
based on Fourier theory (O'Neill et al., 2018; O’Neill et al., 2017). It should be
carefully considered in the future study.

5.1.3 Matrix decomposition

Matrix decomposition such as ICA and PCA enables data-driven exploration of
dynamic connectivity. There are two strategies of applying ICA for functional
network analysis. One is to directly perform ICA on data of activation time series
without calculating connectivity between regions or electrodes and another
apply it on data of connectivity time courses. For the direct application on
activation time courses, ICA based on the independence assumption of
underlying sources has been widely used in both fMRI and M/EEG studies. In
fMRI studies, spatial ICA could be performed on spatiotemporal data to extract
statistically independent spatial map that was considered as coherent functional
network (Damoiseaux et al., 2006; De Luca, Beckmann, De Stefano, Matthews, &
Smith, 2006). The idea is that the source points comprising spatial map share the
same temporal courses (rows of mixing matrix) and thus these independent
spatial maps together with associated time courses were thought of as functional
networks (high temporal correlations among these voxels). In M/EEG studies for
connectivity, temporal ICA could be used to band-limited Hilbert envelope
signals from all source points and then the extracted temporally independent
components were correlated with time courses of each voxels to determine the
spatial maps that represent the functional networks (Brookes, Woolrich, et al.,
2011). This procedure needs to pre-select the frequency band or is implemented
independently for each frequency band of interest. Subsequently, ICA of Fourier
envelope of electrophysiology data were proposed to allow data-driven
exploration of frequency-dependent functional networks (Ramkumar et al., 2012;
Ramkumar et al.,, 2014). Thus, in our publication II, we adopted this spatial
Fourier-ICA to ongoing EEG data recorded during naturalistic music-listening
based on the consideration of its advantage that automatically extracts specific
oscillatory activity from wideband data without pre-selecting the frequency band
of interest (Zhu, Zhang, et al., 2020).

Distinct from directly implementing decomposition on activation time
courses, ICA or PCA could be implemented on connectivity time courses to look
at connectivity patterns with temporally covarying. For example, applying ICA
to connectivity time courses could allow to extract common temporal courses
across connections between pairs of nodes (O'Neill et al., 2017). In this procedure,
each temporally independent component indicates the time evolution of
connectivity and each column of the mixing matrix represents a pattern of
connections with similarly modulated way, representing a network in which all
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connections share a similar behavior (O’Neill et al., 2017). Similarly, PCA could
also be applied to connectivity data. In this case, PCA allows to uncover hidden
patterns of coherent connectivity dynamics across time or multiple subjects
(Leonardi et al.,, 2013). It has been shown the success in the extraction of
meaningful patterns in functional connectivity fluctuations in our publication III.

However, in some cases, there might be several inconveniences when using
matrix decomposition despite its success in dynamic connectivity analysis. For
example, multi-way data were reorganized into a two-way data to facilitate ICA
estimation, which might inevitably lose some potentially existing interactions
between different modes. Alternatively, one could perform independently
multiple decomposition such as for each frequency band of interest.

5.1.4 Tensor decomposition

Tensor decomposition, as a high order extension of matrix decomposition, can be
used for multi-way analysis. Similar to the application of matrix decomposition
in neuroimaging data, there are also two strategies comprised of implementing
decomposition on representations of activation data and connectivity data. In our
publication I, we performed tensor decomposition on data representations of
single-trial time courses to examine the stimuli-induced oscillatory brain activity.
Following this, we implemented decomposition on the multi-way connectivity
representations in our publications IV, V. Although tensor decomposition allows
multi-way analysis for connectivity dynamics, it should be careful with the
interpretation of results. Additionally, tensor decomposition, such as CP model,
implicitly leverages the principle of parallel proportional profiles. This, for an
example of the neuroimaging data with time, electrode and subject, implied that
the underlying brain process has the exact same time courses and spatial
topography across subjects, which is a rather strict assumption in this case.
Future work should note this implicit assumption.

5.2 Brain activity during naturalistic paradigms

In these studies of this thesis, electrophysiology brain networks were examined
not only during repetitive tasks but also in naturalistic paradigms. It is more
beneficial for a deeper understanding of adaptive brain function to investigate
the oscillatory mechanism and network interactions during naturalistic
conditions, compared with the experiment design with simplified repeated tasks
(Sonkusare et al., 2019). In addition, they have the potential to reduce boredom
and repetitive cognitive demands especially for children during naturalistic
conditions (Vanderwal et al.,, 2019). However, there still are issues to be
addressed in future work. Unlike simplified tasks, and more similar to resting
state, these natural conditions lack apparent or intrinsic measurements of the task
performance and attention. To possibly address this issue, there are an increasing
number of solutions, including non-disruptive solutions such as in-scanner eye-
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tracking, and semi-disruptive measures such as feedback of button press during
music listening.

Another challenge it to disentangle the stimuli-related signal changes or
fluctuations in connectivity under the complex, dynamic conditions. Many
approaches were introduced in the past decades to address this gap. For example,
inter-subject functional connectivity based on stimuli-locked dynamics was
developed to reveal shared, stimulus-locked patterns of functional connectivity
(Simony et al., 2016). Other studies have been starting to address this challenge
to achieve the rich level of stimuli annotation required to benefit the model-based
approach (Bartels & Zeki, 2004; Hausler & Hanke, 2016; Lahnakoski et al., 2012;
Salmi et al.,, 2014). Similar to the annotation of stimulus, we automatically
extracted cognition-related musical features from the music stimulus as the time
series of annotation to determine the music-related fluctuations of brain
functional connectivity.

Another open question is that whether complex cognitive dynamics that
occur during naturalistic stimuli be separated into discrete and independent
neural processes associated with specific events/tasks (e.g. the presence or
absence of faces, or certain auditory features during movie watching), and to
what degree is a naturalistic stimulus simply just a sum of its task-parts?
(Eickhoff et al., 2020) Our approach based on matrix/tensor decomposition
might provide a new insight into such question. The idea is to identify separate
brain network dynamics extracted from signal decomposition and to perform
correlation analysis with specific mysical feature extracted from music stimulus.

5.3 Future directions

This thesis investigated the network dynamics in a group of healthy subjects
during experimental tasks especially during music listening. We will study
differences in neural processing between normal and abnormal subjects in future
work. Some studies already shown that natural task such as movie watching
might more easily evoke attentional performance in attention-deficit
hyperactivity disorder, or other psychotic illness (Rikandi et al., 2017; Salmi et al.,
2019). We will extend our frameworks to allow us to examine the neural
difference between groups.

Another direction is to examine the individual differences in brain
responses during naturalistic conditions. At present, there are two ongoing
movements in cognitive neuroscience. One is shifting focus from group-level
inference to individual characterization (Bartolomeo, Malkinson, & De Vito, 2017;
Dubois & Adolphs, 2016; Seghier & Price, 2018). Another one is exploiting the
complexity of naturalistic paradigms to complement tightly well-controlled
experimental tasks (Sonkusare et al., 2019). However, relatively few studies
combine these two aspects, probably since traditional analysis methods for
naturalistic imaging data are designed to detect shared responses rather than
between-subject variability (Finn et al., 2020).
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YHTEENVETO (SUMMARY IN FINNISH)

Tdmdn tutkielman tutkimukset esittdvit uusia ldhestymistapoja sdhkofysiologi-
sen verkkoyhteyden ei-stationaarisuuden ja taajuusspesifisyyden tutkimiseen.
Esitimme erityisesti useita analyysikehyksid, jotka perustuvat padasiassa matrii-
sin / tensorin hajoamiseen, jotta voidaan arvioida dynaamista elektrofysiologista
konnekomia tehtdvan suorittamisen aikana, erityisesti naturalististen tehtdvien
aikana. Ensimmadisessd tutkimuksessa kdytimme CP-hajotusta yksinkertaistet-
tuihin paradigmoihin tallennettujen EEG-tietojen yksitutkimuksisilla, aaltomuo-
dolla muunnetuilla esityksilld drsykkeiden aiheuttaman virédhtelevan aivotoi-
minnan purkamiseksi. Toisessa tutkimuksessa yhdistdmalld spatiaalinen Fou-
rier-ICA akustisten ominaisuuksien poimimiseen tutkimme aivokuvioiden ava-
ruus-spektriset allekirjoitukset kuunnellessamme jatkuvasti luonnollista musiik-
kia. Tulokset osoittivat, ettd musiikillisten ominaisuuksien kasittelyn aivoverkot
olivat taajuusriippuvaisia. Kolmannessa tutkimuksessa tutkimme yhteyden dy-
namiikkaa luonnollisen puheen ymmartdamisen aikana suorittamalla PCA:ta kir-
jekuoripohjaisilla liitettdvyysmittauksilla, jotka on ketjutettu ajallisesti tai ai-
heista, ja osoitimme, ettd erilliset aivoverkot syntyvit onnistuneen puheen ym-
maértdmisen aikana. Neljannessa tutkimuksessa esiteltiin uusi CP-hajoamiseen
perustuva ldhestymistapa tehtdvadn liittyvien toiminnallisten verkkojen tutki-
miseksi, joilla on erillinen spektri itse rauhan liikkumisen ja tyomuistin tehtdvien
aikana. Sitten laajensimme tédtd tensoripohjaista menetelmdd verkkodynamiikan
analysoimiseksi luonnollisen musiikin kuuntelun aikana viidennessa tutkimuk-
sessa. Nama tulokset osoittivat, ettd toiminnallisella liitdanné&lld on dynaaminen
kayttdytyminen millisekuntien (hermostollisen toiminnan) tai sekuntien (aivove-
renkierron) asteikkoalueilla, joilla on rikas spatiotemporaalinen rakenne ja joiden
on myos osoitettu eroavan taajuuskaistojen valilla.
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ABSTRACT

The characterization of dynamic electrophysiological brain
activity, which form and dissolve in order to support ongoing
cognitive function, is one of the most important goals in
neuroscience. Here, we introduce a method with tensor
decomposition for measuring the task-induced oscillations in
the human brain using electroencephalography (EEG). The
time frequency representation of source-reconstructed single-
trail EEG data constructed a third-order tensor with three
factors of time * trails, frequency and source points. We then
used a non-negative Canonical Polyadic decomposition
(NCPD) to identify the temporal, spectral and spatial changes
in electrophysiological brain activity. We validate this
method using both simulation EEG data and real EEG data
recorded during a task of irony comprehension. The results
demonstrated that proposed method can track dynamics ofthe
temporal-spectral modes of the rhythm in the brain on a
timescale commensurate to the task they are undertaking.

Index Terms— EEG, source localization, neural
oscillations, tensor decomposition.

1. INTRODUCTION

During the past decade, the characterization of brain
functional networks and their dynamics has become an
important field of study [1]. Most efforts focusing on the
functional networks have been made through functional
magnetic resonance imaging (fMRI) technique due to high
spatial resolution [2]. Unfortunately, fMRI temporal
resolution is limited since it indirectly measures the
consequences of neural activity. The electrophysiological
underpinnings of the human brain are not yet fully understood
through fMRI. The direct non-invasive measures of neural
activity such as electro- or magnetoencephalography
(EEG/MEG) provide a means to study the neural oscillations.

The EEG consists of the activity of an ensemble of
generators producing rhythmic activity in several frequency
ranges [3]. By application of sensory stimulation these
generators are coupled and act together in a coherent way.
This synchronization and enhancement of EEG activity gives

rise to ‘evoked’ or ‘induced’ oscillations (the former being
phase-locked to the event, the latter not) [3, 4]. To obtain the
data representation of the evoked oscillations, the single trial
EEG data were first averaged and then transformed to the
time-frequency domain by means of wavelet analysis. The
obtained data representations were with multi modes since
EEG had many channels in sensor space. The analysis for
multi-way data (channel X time X frequency) of the evoked
oscillation based on tensor decomposition has been studied
[5-7] (for review see [8]). In contrast, the data of induced
oscillation can be generated by transforming the single trial
EEG to time-frequency domain, which resulted in another
data formation with channel X timex*trial X frequency. In
addition, to examine functional brain structure, source
reconstruction techniques are applied to sensor-level EEG
data, which can somehow overcome the limited spatial
resolution of the EEG [9, 10]. Thus, a new data representation
can be generated with source X time * trial X frequency.
CANDECOMP/PARAFAC (CP), as a basic tensor
decomposition method, can be applied to source-
reconstructed data to extract task-induced neural oscillations.

In this study, we proposed a method based on NCPD for
measuring the task-induced oscillations in the human brain.
The time frequency representation of single-trail source-
reconstructed EEG data constructed a third-order tensor with
three factors of time *trails, frequency and source space.
NCPD was performed to identify the temporal, spectral and
spatial changes in electrophysiological brain activity. The
proposed method was validated using both simulated EEG
data and real EEG data recorded during a task of irony
comprehension. The results demonstrated that proposed
method can tracks dynamics of the temporal-spectral modes
of the rhythm in the brain.

2. MATERIALS AND METHODS
2.1. Data description

2.1.1. Simulated data

We simulated EEG data using Brainstorm toolbox [11].
Three oscillating current dipoles perpendicular to the cortical
surface were placed pre-selected brain regions (Fig.1). The
duration of each trail of the simulated measurement was 1400



ms from -200 to 1200 ms. Each oscillatory source, generated
using different frequent sine wave (8Hz, 15Hz, 25Hz, see
Fig.1), was amplitude modulated by a different smoothed
Hanning widow (Fig. 2) with a SNR of 20 dB. Next, we
applied a forward solution with a boundary-element
conductor model from template anatomy to simulate the 128-
channel EEG data. Finally, to make the simulations more
realistic, the magnitudes of different trails were different and
were normal distribution.

A. Locations

B. Time courses C. Spectrum
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Fig. 1. Locations (A) of the simulated oscillatory current
sources on an inflated and flattened brain surface and the time
courses (B) and spectrum (C) of the three sources.
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2.1.2. Experimental data
The data was collected at the University of Jyvaskyla,
Finland. Thirty-eight participants were included in the final
sample, in which there were 17 dysphoric participants and 21
control participants. The study was approved by the Ethics
Committee of the University of Jyvaskyla. Stimuli with one-
sentence spoken lines and colored pictures were applied.
Each stimulus trial consisted of an introductory sentence, a
contextual picture, and a commenting sentence. There were
two different types of stimuli (two conditions). If the keyword
in commenting sentence was semantically congruent with the
content of the contextual pictures, the trail provided a neutral
meaning; otherwise, the keyword was semantically
incongruent with the picture composed an ironic meaning.
The commenting sentences were presented twice to the
participants combined with the congruent and incongruent
contextual pictures. There were 90 trials in each condition.
EEG data were collected by NeurOne system (Bittium
Biosignals Ltd, Kuopio, Finland) with a 128-Channel Net
(HydroCel Geodesic Sensor Net, Electric Geodesic Inc,
USA), and preprocessed using EEGlab [12]. They were
down-sampled to 250 Hz to reduce the size of datasets
without losing important data information. The 0.5 Hz high-
pass and 20 Hz low-pass filters were applied on EEG data.
Next, EEG data were visually checked and the bad channels
were interpolated using a spherical spline model. After this,

EEG data was extracted into 1100 ms long segments relative
to the onset of keywords, starting from 100 ms before the
presentation of keywords. Segments whose maximum
exceeds 150 pV for all channels were rejected. Hereinafter,
when EEG is mentioned, it means the preprocessed one.

In order to extract task-induced neural oscillations, the
data used in this study were from the control group with
incongruent (ironic) stimuli. It should be noted that we do not
intend to examine the difference between groups or stimulus.

2.2. Third-order tensor of source-level EEG data

The forward model and the inverse model were computed
with a MATLAB toolbox Brainstorm [11]. The forward
model was calculated using the symmetric boundary element
method and default MNI MRI template (Colin 27).
Preprocessed single-trial data were used to compute the
inverse model, which was estimated using the weighted
Minimum Norm Estimate. Finally, activation time-courses at
4003 vertices were estimated.

Spectral decomposition of source-reconstructed EEG
from single trials was conducted with Morlet wavelet. 275
linearly spaced time points form -100 ms to 1000 ms and 37
frequency points linearly spaced between 2 Hz and 20 Hz
were estimated for each trial. Therefore, for every subject, we
obtained a 3D tensor of 37 (frequency points) x 275% ‘number
of trials’ (time points) x 4003 (source points). Absolute
values of the decomposed data were analyzed to investigate
task-induced changes in oscillatory power.

2.3. Nonnegative Canonical polyadic decomposition
(CPD)

In this paper, we denote a scalar variable by lowercase letter,
such as x; a vector by boldface lowercase letter, such as x; a
matrix by boldface uppercase letter, such as X; and a high
order tensor by boldface script letter, such as X. Operator o
represents outer product of vectors, & denotes the
Hadarmard product, [ ] represents Kruskal operator,
and || ||z means Frobenius norm. Nonnegative
CANDECOMP/PARAFAC decomposition is abbreviated as
NCP for convenience in following contents.

The NCP model [13] can be formulated as follows. For a
given Nth-order tensor X € R?Xlzx'"x'” performing a
factorization into a set of NV unknown non-negative matrices

whose elements are non-negative: U™ =

[ui"),ug"),---,u(n)] € ]R{i“x](n =12--,N) can be
described as:

X ~ Hu(l), e, U(N)]], (1)
where J is the number of extracted components, I,, is the size
in mode-n, The Kruskal operator for estimated non-negative
matrices in (1) can be represented by the sum of J rank-1
tensors in outer productor form:

— v/ _vJ Wo,,(2)o . 0,,(N)
[[U(l)'...'U(N)]] _2121‘11] _Zj=1uj u] vee u] ) (2)



where U;(j = 1,2, -+, ]) are the rank-1 tensors. The target of
NCP is to obtain the suitable U™ and one J here is defined to
correspond to one NCP model. Each factor U™ explains the
data tensor along a corresponding mode. Hence, one factor
can be considered as features of the data onto the subspace
spanned by the others. Most algorithms for NCP are to
minimize a squared Euclidean distance as the following
optimization problem

e = [u®, -, u™]|1. 3)

U(l) U(N) 2
In this paper, we applied the hierarchical alternating least
squares (HALS) algorithm whose simplified version for NMF
has been proved to be superior to the multiplicative
algorithms [14]. The HALS is related to the column-wise
version of the ALS algorithm for 3-D data [5]. The HALS
algorithm used in this study sequentially updates components
u by a simple update rule

u™ e X%, () - v w) @)
where X X x_n {u } is sequentially computed as the (N — 1)
tensor-vector multiplications among all modes, but mode-n.
It should be noted that this study does not intend to propose
an NCP algorithm. Therefore, any NCP algorithm can work
for the data. In this paper, the CPD was performed to the
third-order data (N=3). After decomposition, the jth

component containing spectral, temporal, spatial factor can

(1)o (Z)o (3)
]

be represented by U; = u; according to Eqn (2).

2.4. Component number estimation

In the application of tensor decomposition to EEG data, it is
necessary to determine a proper component number, which is
the rank-1 tensor number J in (2). Determining this number
is very important to NCP because different numbers in
different quantitative levels may probably correspond to very
different decomposition results. In this study, DIFFIT
(difference of fit) method was applied to determine the
number of components [15]. DIFFIT measures the change of
the fit (explained variance of the raw data by the proposed
model) and the core tensor of the decomposition among a
number of models [5]. We run ten times for each J and
average the fits to obtain a more precise estimation. After
DIFFIT estimation, J = 5 was selected for simulated dataset
and J = 10 for real EEG dataset.

2.5. Testing for task-related brain activity

After tensor decomposition, a set of J brain activity, showing
interactions among spectral temporal and spatial modes, were
yielded. In all tensor-based methods, it is a general question
that which components extracted need to be retained and
which just reflect noise. In this study, the statistical
significance of each obtained component was accessed by a
permutation procedure based on surrogate data [16]. Phase-
randomized surrogate time courses of equal mean and
autocorrelation to the extracted temporal factor of the

component were obtained. The phase-randomization was
computed by rotating the phase ¢(f) by an independent
random variable @(f) which was uniformly chosen in the
range of [0, 27) [16].

We first averaged the time courses matrix U® over all
trials in all subjects yielding a new matrix, U®, containing J
trial averaged time courses of component. The size of
UPwas N,,;q; X J, (Where N,y;q denotes the number time
points per trial; 350 for simulated data and 275 for real data).
Then, the phase randomization permutation process was
performed [17]. Following this, an empirical null distribution
was constructed. A matrix 175\,22,“ was generated in the same
way as U@, but prior to averaging over trials, the phases of
time courses for each trial were randomized. We reasoned
that if the components extracted were not related to the
cognitive tasks, this phase randomization would no effect on
the magnitude of the trial averaged time courses, and
therefore the magnitudes of fluctuations in Uf\,zl),LL and U@
would match. However, if the components contained trial-
onset-locked increases or decreases in brain activity, then
these would be maintained in U® but diminished in U fvzl),LL.
This procedure was repeated 5000 times. A component was
deemed significant if, at any one time point in the trial
average, the associated column of U® fluctuated such that it
fell outside a threshold defined by the null distribution. The
threshold for significance was defined at 0.05 and it should be
noted this was corrected by Bonferroni correction for
multiple comparisons across J components [17].

3. RESULTS
3.1. Simulation results

Fig. 2 shows the envelope time courses and the power spectra
for all three correctly reconstructed brain networks and one
noise artifact (we just present one artifact for demonstration).
As can be seen that the location, spectra and the averaged
time courses of the pre-set brain sources were reconstructed
successfully. Fig. 2C shows the time course of the brain
activity, represented as the corresponding trial averaged time
courses of components in U®). The grey area represents the
null distribution generated by randomizing the phase of the
trial time courses (U ULL) Again, the black line represents
the average response across all trials in all subjects, and the

grey distribution is the 95" percentile threshold for the null
distribution.

3.2. Results from experimental EEG data

Fig. 3 shows the results of our method applied to the real EEG
data. Although 10 components were extracted, we just
present two components that demonstrated significant task
modulation. Clearly, the 1* row of Fig. 3 indicates that the
Delta brain oscillation appeared in the right temporal-



occipital junction during 800 ms after onset. The 2™ row of
Fig. 3 shows that the Theta rhythm emerges in the left frontal
area corresponding to Broca’s area, which is significantly
related with language cognition, during 400 ms after onset.
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Fig. 2. Results of simulation. A: spatial maps of extracted
components. B: Spectral factor of the components. C: Time
courses of components, averaged across trials (black line).
The grey shaded region represents the null distribution based
on a hypothesis that the response is not time locked to the
tasks. Significance (P orrectea < -05) is attributed if the black
line appears outside the null distribution. Rows 1 to 3 show
the three induced oscillatory sources. Row 4 demonstrates an
artifact.

4. DISCUSSION

This paper has introduced a method mainly based on tensor
decomposition to extract task-induced brain oscillations,
which allows characterization of transiently forming and
dissolving electrophysiological brain activity. The proposed
method was validated by both simulated data and real EEG
data. When application to real EEG data collected from task
of irony comprehension, we found brain activity of interest,
which was associated with irony comprehension. The results
demonstrated that the Delta rhythm was elicited in Broca’s
area after 400ms of the ironic stimulus and the theta
oscillation involved in comprehension of irony in right
temporal-occipital junction after 800ms of the stimulus.

Actually, such elicited brain activity in those brain regions
can be expected since the previous studies has also reported
that the same brain areas were associated with humor
comprehension [18, 19].

The proposed approach is different from the previous
reports where the tensor decomposition was applied to extract
multi-domain feature of ERP (event-related potential) [5-7].
Here, we performed tensor decomposition to trials
concatenated source-level data to extract the task-induced
brain oscillation, which allows examination of temporal
spectral dynamics in brain cortex during task performance or
cognitive process.
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Fig. 3. Results of experiment data. A: spatial maps of
extracted components. B: Spectral factors of the components.
C: Time courses of components, averaged across trials in all
subjects (black line). The grey shaded region represents the
null distribution (P.prrectea < -05) based on a hypothesis that
the response is not time locked to the tasks. Row 1 shows the
Delta oscillation involved in comprehension of irony in right
temporal-occipital junction after 800 ms of the stimulus
onset. Row 2 demonstrates the Theta rhythm was elicited in
Broca’s area after 400 ms of the ironic stimulus onset.

As we all known, it is very complex to decode brain
response to external stimulus. During a cognitive process,
different brain rhythm would be emerging in different regions
at different time, which causes the complexity of analysis for
the EEG data. Therefore, the analysis for the data must
account for  temporal non-stationarity, spatial
inhomogeneities, and spectral structure [20]. The time
frequency representation of source level data based on
wavelet transformation can well describe the property of the
brain data. Tensor decomposition technique provides a means
to extract information from such big and complex data.
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Abstract

Recently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video repre-
sents an attractive challenge because of the low signal-to-noise ratio in collected brain data. Although most efforts focusing
on exploring the listening brain have been made through functional magnetic resonance imaging (fMRI), sensor-level elec-
tro- or magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are involved in the brain
network activity under naturalistic stimuli. This study exploited cortical oscillations through analysis of ongoing EEG and
musical feature during freely listening to music. We used a data-driven method that combined music information retrieval
with spatial Fourier Independent Components Analysis (spatial Fourier—-ICA) to probe the interplay between the spatial
profiles and the spectral patterns of the brain network emerging from music listening. Correlation analysis was performed
between time courses of brain networks extracted from EEG data and musical feature time series extracted from music stimuli
to derive the musical feature related oscillatory patterns in the listening brain. We found brain networks of musical feature
processing were frequency-dependent. Musical feature time series, especially fluctuation centroid and key feature, were
associated with an increased beta activation in the bilateral superior temporal gyrus. An increased alpha oscillation in the
bilateral occipital cortex emerged during music listening, which was consistent with alpha functional suppression hypothesis
in task-irrelevant regions. We also observed an increased delta—beta oscillatory activity in the prefrontal cortex associated
with musical feature processing. In addition to these findings, the proposed method seems valuable for characterizing the
large-scale frequency-dependent brain activity engaged in musical feature processing.

Keywords Frequency-specific networks - Music information retrieval - EEG - Independent components analysis

Introduction

Understanding how our brain perceives complex and contin-
uous inputs from the real-world has been an attractive prob-
lem in cognitive neuroscience in the past few decades. Brain
Handling editor: Christoph M. Michel. imaging technology provides an opportunity to address this
issue. However, revealing brain states is generally more
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difficult during real-word experiences than those recorded
brain activities during resting-state or simplified abstract
stimuli like controlled and rapidly repeated stimuli (Hasson
et al. 2010; Malcolm et al. 2016; Spiers and Maguire 2007).
The question of how to disentangle stimuli-induced brain
activity from spontaneous activity still remains open for sci-
entific research due to the complexity of natural situations.
In the present study, we attempt to formulate an approach
with several analysis techniques including spatial ICA,
source localization, acoustic feature extraction, and temporal
correlation to examine the elicited oscillatory brain networks
using ongoing electroencephalography (EEG) recorded dur-
ing music listening.

Recently, the brain state under the naturalistic stimuli
including music and movie has been investigated through
functional magnetic resonance imaging (fMRI) (Alluri et al.
2012a, b; Alluri et al. 2013; Burunat et al. 2014, 20164,
b; Liu et al. 2017; Toiviainen et al. 2014), MEG (Koski-
nen et al. 2013; Lankinen et al. 2014) and EEG (Cong et al.
2013a, b; Daly et al. 2014, 2015; Schaefer et al. 2013; Sturm
et al. 2015; Zhu et al. 2019, 2020). Alluri et al. explored the
neural correlates of music feature processing as it occurs in
a realistic or naturalistic environment, where eleven partici-
pants attentively listened to the whole piece of music (Alluri
et al. 2012a, b; Burunat et al. 2016b, a). They successfully
identified brain regions involved in processing of musical
features in a naturalistic paradigm and found large-scale
brain responses in cognitive, motor and limbic brain net-
works during continuous processing of low-level (timbral)
and high-level (tonal and rhythmical) acoustic features using
fMRI. Burunat et al. studied the replicability of Alluri’s find-
ings using a similar methodological approach with a similar
group of participants and found the processing mechanisms
for low-level musical features were more reliable than high-
level features (Burunat et al. 2016b, a). Unfortunately, all
BOLD measurements by fMRI are to some degree con-
founded since they are indirect assessments of brain activ-
ity; they relate to blood flow and not to electrical processes
and are therefore limited by poor temporal resolution due to
the protracted hemodynamic response (Brookes et al. 2014;
Li et al. 2019). After that, Cong et al. used an analogous to
correlation analysis technique to investigate neural rhythms
based on ongoing EEG data collected during listening to
same music stimuli (Cong et al. 2013a, b; Wang et al. 2016).
They found the theta and alpha oscillations along central and
occipital area of scalp topology seems significantly associ-
ated with high-level (tonal and rhythmical) acoustic features
processing. Also, many other studies tried to examine the
neural underpinnings of music listening based on sensor-
level EEG data (Jancke et al. 2015, 2018; Markovic et al.
2017), in which different frequency bands were extracted
using time—frequency analysis methods and further ana-
lyzed separately (e.g., event-related synchronizations and
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oscillatory power changes). Those studies showed the influ-
ence of different music listening styles on neurophysiologi-
cal and psychological state interpreted by brain activation.
Some sensor-level EEG studies examined the physiological
correlates of continuous changes in subjective emotional
states while listening to a complete music piece (Mikutta
et al. 2012, 2014). Compared with sensor-level EEG analy-
sis, recent studies adopted a mathematical approach (called
SLORETA-ICA) combing source localization techniques
with ICA to detect the independent functional networks
during music listening (Jincke and Alahmadi 2016; Rogen-
moser et al. 2016). Although the aforementioned studies
investigated the oscillatory activation or functional net-
works during music listening, the specific networks emerg-
ing from dynamic processing of musical features are not yet
fully understood (Meyer et al. 2006). For example, there
is evidence indicating that timbral feature processing was
associated with increased activations in cognitive areas of
the cerebellum, and sensory and default mode network cer-
ebrocortical areas, but musical pulse, and tonality process-
ing recruited cortical and subcortical cognitive, motor and
emotion-related circuits (Alluri et al. 2012a, b; Meyer et al.
2006). Thus, we aimed to examine the electrophysiological
underpinnings of these networks emerging from dynamic
processing of musical features.

Independent component analysis (ICA) is a well-estab-
lished data-driven approach increasingly used to factor
resting-state fMRI data into temporally covarying, spatially
independent sources or networks. By contrast, in the anal-
ysis of EEG/MEG data, ICA has mainly been applied for
artifact rejection. However, spatial Fourier-ICA was pro-
posed for data-driven characterization of oscillatory brain
activity using EEG/MEG data. Compared with other ICA
method applied to the context of music listening, spatial
Fourier—ICA used in the current study can automatically
extract narrowband oscillations from broadband data with-
out having to manually specify a frequency band of interest.
So far, spatial Fourier—ICA has already been proved to be
fruitful in gaining insights into electrophysiological under-
pinnings of networks (Kauppi et al. 2013; Li et al. 2018;
Ramkumar et al. 2014).

By applying spatial Fourier—ICA in combination with
acoustical feature extraction, this study aims at probing the
spatial-spectral patterns under music listening. Particularly,
the current study attempts to provide an analysis framework
for identifying the spatial, temporal, and spectral signatures
of brain activation recruited during dynamic processing of
music features. Similar to our previous music listening stud-
ies (Alluri et al. 2012a, b; Cong et al. 2013a, b), we extracted
five musical features from the musical stimulus, and spatial,
temporal, and spectral factors using spatial Fourier—ICA to
EEG data. We then analyzed the correlation between tem-
poral courses and the musical feature time series to identify
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frequency-specific brain networks emerging from dynamic
processing of musical features. We expected spatial Fourier-
ICA to reveal functionally oscillatory EEG source contribut-
ing to the musical feature processing.

Material and Methods
Data Acquisition
Participants

Fourteen right-handed and healthy adults aged 20 to 46 years
old were recruited to take part in the current experiment
after signing written informed consent. None of them was
reported about hearing loss or history of neurological ill-
nesses and none of them had professional musical education.
However, many participants reported background in different
music-related interests such as learning to play an instru-
ment, producing music with a computer, singing. Table 1
demonstrates the age and the non-professional musical back-
ground of each participant. This study was approved by the
local ethics committee.

EEG Data Acquisition

During the experiment, participants were informed to listen
to the music with eyes open. A 512 s long musical piece of
modern tango by Astor Piazzolla was used as the stimulus.
Music was presented through audio headphones with about
30 dB of gradient noise attenuation. This music clip had
appropriate duration for the experimental setting, because
of its high range of variation in several musical features

such as dynamics, timbre, tonality and rhythm (Alluri et al.
2012a, b). The EEG data were recorded according to the
international 10-20 system with BioSemi electrode caps (64
electrodes in the cap and 5 external electrodes at the tip of
the nose, left and right mastoids and around the right eye
both vertically and horizontally). EEG were sampled at a
rate of 2048 Hz and stored for further processing in off-
line. The external electrode at the tip of the nose was used
as the reference. EEG channels were re-referenced using a
common average. The data preprocessing was carried out
using EEGLAB (Delorme and Makeig 2004). The EEG
data were visually inspected for artefacts and bad channels
were interpolated using a spherical spline model. A notch
filter at 50 Hz was applied to remove noise. High-pass and
low-pass filter with 1 Hz and 30 Hz cutoff frequencies were
then applied as our previous investigation of the frequency
domain revealed that no useful information was found in
higher frequencies (Cong et al. 2013a, b). Finally, the data
were down-sampled to 256 Hz. In order to remove EOG
(i.e., eye blinks), ICA was performed on EEG data of each
participant. To additionally remove any DC-jumps occasion-
ally present in the data, we differentiated each time series,
applied a median filter to reject large discontinuities and
reintegrated the signals back (Ramkumar et al. 2012).

Musical Features

Based on the length of the window used in the computa-
tional analyses, the musical features can be generally clas-
sified into two categories: long-term features and short-term
features (Alluri et al. 2012a, b; Cong et al. 2013a, b). Five
long-term musical features including Mode, Key Clarity,
Fluctuation Centroid, Fluctuation Entropy and Pulse Clarity

Table 1 Age and musical

. No. of participant Age Years of musi-  Instrument Years of activity Type of dance
background of each participant cal activity in dance

Sub01 20 15 Piano/singing None

Sub02 23 13 Piano/flute None

Sub03 23 16 Cello None

Sub04 23 None 6 Ballet
Sub05 20 2 Piano None

Sub06 42 15 Alto saxophone None

Sub07 46 None None

Sub08 22 7 Piano None

Sub09 21 None None

Sub10 34 6 Piano/keyboards None

Subl1 31 5 Piano None

Subl2 25 7 Piano/violin 7 Folk dance
Subl3 25 None None

Subl4 24 3 Piano None

@ Springer
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were examined here. They were extracted using a frame-
by-frame analysis approach commonly used in the field of
Music Information Retrieval (MIR). The duration of the
frames was 3 s and the overlap between two adjacent frames
67% of the frame length. The chosen length of the frame
was approximately consistent with the length of the auditory
sensory memory (Alluri et al. 2012a, b). This analysis pro-
cess yielded the time series of musical feature at a sampling
frequency of 1 Hz, in accordance with the short-time Fou-
rier transform (STFT) analysis of EEG data. Thus, both the
musical features and temporal courses of EEG had 512 time
points. All the features were extracted using the MIRtoolbox
(Lartillot et al. 2008) in MATLAB environment.

For the completeness of the content, we briefly introduce
the five features below. We extracted two tonal and three
rhythmic features. For the tonal features, Mode represents
the strength of major or minor mode. Key Clarity is defined
as the measure of the tonal clarity. The rhythmic features
included Fluctuation Centroid, Fluctuation Entropy, and
Pulse Clarity. Fluctuation Centroid is the geometric mean of
the fluctuation spectrum, representing the global repartition
of rhythm periodicities within the range of 0—10 Hz (Alluri
et al. 2012a, b). This feature indicates the average frequency
of these periodicities. Fluctuation entropy is the Shannon
entropy of the fluctuation spectrum, representing the global
repartition of rhythm periodicities. Fluctuation entropy is a
measure of the noisiness of the fluctuation spectrum (Alluri
et al. 2012a, b; Cong et al. 2013a, b). Pulse Clarity, naturally,
is an estimate of clarity of the pulse (Alluri et al. 2012a, b;
Cong et al. 2013a, b).

Source Localization

For each subject, the brain’s cortical surface was recon-
structed from an anatomical MRI template in Brainstorm
(Tadel et al. 2011). Dipolar current sources were estimated
at cortical-constrained discrete locations (source points)
separated by 15 mm. Each hemisphere was modelled by
a surface of approximately 2000 vertices, thus a mesh of
approximately 4000 vertices modelled the cortical surface
for each subject.

The measured EEG signals are generated by postsynaptic
activity of ensembles of cortical pyramidal neurons of the
cerebral cortex (Lei and Yao 2011). These cortical pyrami-
dal neurons can be modelled as current dipoles located at
cortical surface (Lin et al. 2006). The scalp potentials gen-
erated by each dipole depend on the characteristics of the
various tissues of the head and are measured by the EEG
scalp electrodes (Tian et al. 2011). With the geometry of
the anatomy and the conductivity of the subject’s head, the
time course of the dipole’s activity can be assessed by solv-
ing two consecutive problems: the forward problem and the
inverse problem.

@ Springer

The forward problem is to model the contribution of each
dipole to the signals of the EEG electrodes by solving Max-
well’s equations, which takes the geometry and conductivity
of head tissues into account. In this study, a forward solu-
tion was calculated using the symmetric boundary element
method (BEM) for each source point while a relative con-
ductivity coefficient was assigned to each tissue (with default
MNI MRI template).

To solve the inverse problem, minimum-norm estimate
(Lin et al. 2006) was adapted with a loose orientation con-
straint favoring source currents perpendicular to the local
cortical surface (no noise modelling). When computing the
inverse operator (1) the source orientations were constrained
to be normal to the cortical surface; (2) a depth weighting
algorithm was used to compensate for any bias affecting
the superficial sources calculation; and (3) a regularization
parameter, A2 = 0.1 was used to minimize numerical instabil-
ity, and to effectively obtain a spatially smoothed solution.
Finally, an inverse operator G of dimensions N, X N, (where
N; is the number of source points and N, is the number of
channels: N, > N_) was obtained to map the data from
sensor-space to source-space. Here, we had N, = 4000 and
N, = 64.

Spatial Fourier Independent Component Analysis

Spatial Fourier-ICA was recently proposed to character-
ize oscillatory EEG/MEG activity in cortical source space
(Ramkumar et al. 2012, 2014). The main idea was to apply
complex-valued ICA to short-time Fourier transforms of
source-level EEG/MEG signals to reveal physiologically
meaningful components. We briefly introduced the main
steps of spatial Fourier-ICA for the completeness of the
content. Figure 1 demonstrates the analysis pipeline based
on spatial Fourier-ICA and acoustical feature extraction.

Time-Frequency Data in Cortical Source Space

Preprocessed EEG data ¥, (N, channels X N, sampling
points) were transformed by STFT to obtain complex-valued
time—frequency representation (TFR) data Y, (N, N;, N,).
To obtain TFR data in source space, three-way sensor-space
TFR data Y, was reorganized as two-way matrix /Yl (N,
N, X Ny). The source-space TFR data /17'2 was then obtained
by left-multiplying the linear inverse operator G (N,, N,)
which was computed using the minimum-norm estimate
inverse solution sensor-space data ?1,

¥, =GY, 6))

Two-way data /Yz (N, N, X Ny) can be rearranged as a
three-way tensor format Y, (N;, N,, Ny). For application of
spatial Fourier ICA, we then rearranged the three-way tensor
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Fig. 1 Analysis pipeline based on spatial Fourier-ICA and acoustical
feature extraction. Temporal, spectral and spatial profiles of brain pat-
tern were extracted using spatial Fourier—ICA. Musical feature time
series were extracted using acoustical feature extraction. Then, cor-

Y, as a two-way matrix X, (N,,N; X N;). Thus, each row of
X, was comprised of the complex-valued short-time Fourier
coefficients from each source point for specific time points
and each column represented a time point corresponding to
a short-time window. In this study, the Hamming-widow
with 3-s-length and 2-s-overlap of the adjacent windows
was selected, resulting in a sampling rate of 1 Hz in time
dimension. This sampling rate was in consistent with musi-
cal feature time series (see Musical features). The duration
of EEG was 512 s, so we had N, = 512 time points. We
adopted a 512-point FFT to calculate the STFT resulting in
256 frequency bins (Range of frequency: 1-128 Hz) for each
window. We selected the range of frequency bins covering
1-30 Hz (N, = 60) for further analysis.

Application of Complex-Valued ICA on Reshaped Data

For data X|,, we applied complex-valued ICA (A. Hyvarinen
et al. 2010) and treated each row as an observed signal
assumed to be a linear mixture of unknown spatial spectral
pattern. Since the original data (X,,) dimension was rela-
tively high for the complex ICA calculation, data dimen-
sion reduction was required in the preprocessing step of
ICA. A common approach of data dimension reduction is
principal component analysis (PCA) which is linear. Here
we extended PCA to the complex domain by considering
complex-valued eigenvalue decomposition (Li et al. 2011).

relation analysis between temporal course of components and musical
time series were performed to retain music elicited components. The
spatial maps of retained components were clustered into several pat-
terns

The choice of model order was based on previous studies
(Abou-Elseoud et al. 2010; Smith et al. 2009), which sug-
gested the number of a dimension slightly larger than the
expected number of underlying sources. In this study, we
tried different model orders and found that 20 was a reason-
able order, which preserved much of the information in the
data and reduced the dimensionality of the results. Then
we extracted 20 independent components using complex-
valued FastICA algorithm which applied ICA to STFT of
EEG data in order to find more interesting sources than with
time-domain ICA (A. Hyvarinen et al., 2010). This method
is especially useful for finding sources of rhythmic activity.
After complex-valued ICA, a mixing matrix A (N,N;. =20
is number of components) and estimated source matrix s
were obtained. Each column of A represented the temporal
course for each independent component (IC). The ICs in the
rows of § (N> Ny X Ny) represented spatial-spectral patterns,
which can be decomposed into the spatial power map and
power spectra.

Spatial Map, Spectrum, and Temporal Course of ICs

By reshaping each row of S for each IC, we obtained a
matrix (Ny, N,), which meant there was a Fourier coefficient
spectrum for each cortical source point. To obtain and visu-
alize the spatial map of the IC, we computed the average of
the squared magnitude of the complex Fourier coefficients

@ Springer
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across those frequency bins. Since the distribution of mean
squared Fourier amplitude over the whole brain is highly
non-Gaussian, we did not apply conventional z-score-based
thresholding; instead, we applied a threshold to display for
each component map only source points with the top 5%
squared Fourier amplitude (Ramkumar et al. 2012). Then
we analyzed the correlation coefficient of the spatial maps
in those frequency bins and those spatial maps were similar.
To visualize and obtain the spectrum of each IC, we calcu-
lated the mean of the Fourier power spectrum across those
source points exceeding the 95th percentile (Ramkumar
et al. 2012). Finally, we extracted the absolute values of the
column of mixing matrix A corresponding to the row of the
estimated IC as the time course, which reflected fluctuations
of the Fourier amplitude envelope for the specific frequency
and spatial profile.

Stability of ICA Decomposition

To examine the stability of ICA, we applied 100 times ICA
decomposition for each subject with different initial condi-
tions. For the real-valued case, ICASSO toolbox (Himberg
et al. 2004) has been used to evaluate stability among mul-
tiple estimates of the fastICA algorithm (Hyvarinen 1999).
All the components estimated from all runs were collected
and clustered based on the absolute value of the correlation
coefficients among the squared source estimates of ICASSO.
Finally, the stability index Iq was computed for each com-
ponent. Iq reflects the isolation and compactness of a cluster
(Himberg et al. 2004). Iq is calculated as follows:

Iq = SG); — SW)pri=1,...,] 2)

_ where § (i),,, denotes the average intra-cluster similarity;
S (i), indicates average inter-cluster similarity and J is the
number of clusters. The Iq ranges from ‘0’ to ‘1’. When Iq
approaches ‘1’, it means that the corresponding component
is extracted in almost every ICA decomposition application.
This indicates a high stability of the ICA decomposition for
that component. Otherwise, it means the ICA decomposition
is not stable. Correspondingly, if all the clusters are isolated
with each other, ICA decomposition should be stable. In
general, there is no established criterion upon which to base
a threshold for cluster quality. Given the preliminary nature
of this investigation, we consider the decomposition is stable
if the Iq is greater than 0.7.

In this study, the ICASSO toolbox was modified to be
available for the complex-valued case as well. The correla-
tion matrix was used as the similarity measure for cluster-
ing in real-valued ICASSO. For the complex case, since the
ICs were complex-valued, we just considered the correlation
matrix among the magnitude ICs to perform the clustering
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(Li et al. 2011). Then, we took the Iq as the criterion to
examine stability of the ICA estimate.

Testing for Stimulus-Related Networks

After ICA decomposition, we obtained 20 X 14 =280 ICs
(14 subjects, 20 components for each subject). Now the
challenge is to determine which one of these represents the
genuine brain responses. In all ICA based methods, it is a
general question that which independent components need to
be retained or which component just reflects noise. Here, we
examine which components were modulated significantly by
the musical features. We computed the correlation (Pearson’s
correlation coefficient) between the time courses of musical
features and the time courses of those ICs (the dimensional-
ity of both them is 512 points) in order to select stimulus-
related activations. We used the Monte Carlo method and
permutation tests presented in our previous research (Alluri
et al. 2012a, b; Cong et al. 2013a, b) to calculate the thresh-
old of significant correlation coefficient. In this method, a
Monte Carlo simulation of the approach was performed to
determine the threshold for multiple comparisons. We kept
those ICs whose time courses were significantly correlated
(p <0.05) with the time courses of musical features for fur-
ther analysis.

Cluster Analysis

The selected ICs had been represented by spatial map, spec-
trum, and temporal course. Since spatial ICA was carried
out on individual level EEG data, we needed to examine the
inter-subject consistency among participants. In this study,
we focused on the spatial pattern emerging in the process
of freely listening to music, so a group level data analysis
was performed by clustering spatial maps of the selected
ICs to evaluate the consistency among the participants. For
reliable clustering, we applied a conventional z-score-based
normalization to each spatial map. All spatial maps of the
screened components significantly correlated with musical
features were clustered into M clusters to find common spa-
tial patterns among most of participants. Here for simplic-
ity, a conventional k-means cluster algorithm was used with
the Kaufman Approach (KA) for initializing the algorithm.
We used the minimum description length (MDL) to deter-
mine the number of clusters M. Afterwards we countered
the number of subjects involved in ICs in each cluster. If
the number of subjects in one cluster is less than half of
the all subjects, this cluster would be discarded for the rea-
son that such a cluster does not reveal information shared
among enough participants. For the retained clusters, the
spatial-spectral-temporal information was obtained, which
was represented by the centroid of the cluster, the spectra
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of ICs and the numbers of subjects whose temporal courses
were involved in this cluster.

Results
Musical Features

Five musical features were extracted by MIRtoolbox (Lar-
tillot and Toiviainen 2007) with 3 s time-widow and 2 s
overlap, resulting in 1 Hz sampling rate of temporal course.
They are Fluctuation Centroid, Fluctuation Entropy, Key
Clarity, Mode and Pulse Clarity. The time series of these
features had a length of 512 samples, which matched the
length of the time course of the EEG components. Figure 2
shows their temporal courses.

Stability of ICA Decomposition

We extracted 20 ICs using modified ICASSO with 100 runs
for each subjects’ data, then we obtained the stability index
Iq. Figure 3 shows the magnitude of Igs for each participant,
greater than 0.7 for most ICs. The 20 ICs were separated
with each other for every participant from the view of clus-
tering. Thus, the ICA estimate was stable and the results of
ICA decomposition in this study were satisfactory for each
participant data to further analysis.

Fig.2 Time course of five
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Fig. 3 Iq of each component extracted. Different curves represent dif-
ferent participants

Interesting Clusters: Frequency-Specific Networks

After 85 ICs whose spatial maps were significantly corre-
lated with musical features were selected, we set the num-
ber of clusters as five by performing MDL to estimate the
optimal model order. Then the spatial maps of ICs were
clustered into five clusters. Three clusters representing

Time courses of musical features

musical features

Fluctuation
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frequency-specific networks were chosen since the number
of subjects in the cluster is more than half of the all sub-
jects. Figure 4 demonstrates one of these clusters including
the centroid of all spatial maps (Fig. 4a), the distribution of
number of subjects across musical features (Fig. 4b) and
the spectrum of the ICs in this cluster (Fig. 4c). Then we
computed the correlation coefficients among spatial maps
in each cluster to evaluate the performance of clustering.
Figure 5 shows the inter-cluster similarity. We computed
the mean of the correlation coefficients in each cluster and
the corresponding standard deviation (SD). For cluster#1,
the mean is 0.642 and the corresponding standard deviation
(SD) is 0.1238. For cluster#2, the mean is 0.7125 and SD is
0.0572. For cluster#3, the mean is 0.8084 and SD is 0.0747.
This indicates that the spatial patterns are similar across the
participants. In the Table 2, we listed the participants whose
EEG data were correlated with every musical feature in each
cluster.

B The number of ICs & subjects

8
- Total component$
1 Total subjects
6 - B
P
[0}
o
1S
S
Z 4r 1
2r I 1

Pulse
Clarity

Fluctuation Fluctuation Key
Centroid Entropy

Mode

Fig.4 Cluster#1: Beta-specific networks. a The centroid of the spa-
tial maps in the cluster, which reflected a spatial pattern across most
of participants. The bilateral superior temporal gyrus (STG) was acti-
vated (from left to right: left hemisphere, top view, right hemisphere).
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A Spatial Map

Normalized Amplitude

Beta-Specific Network

Figure 4 shows results of the Beta-specific brain net-
works engaged in processing music features. The spatial
map displays that musical features were associated with
increased activation in the bilateral superior temporal
gyrus (STG). The spectrum of ICs in this cluster illus-
trates the beta rhythm (focusing on 20 Hz) was involved
in generating this network. Thus, relatively large-scale
brain region generated by beta rhythm was activated in
the bilateral STG and the magnitude of activation in right
hemisphere was a little stronger than left hemisphere.
This Beta-specific network was found in seven subjects
during music free-listening (see the first row of Table 2).
Fluctuation Centroid were associated with this brain
networks among subjects 2, 4, 5, and 12. The brain net-
works of subjects 1, 2, 3 and 13 were correlated with key
feature. For fluctuation entropy, pulse clarity and mode,

C The normalized spectrum of each IC

1 T T : :
Beta band

15
Freqquency (Hz)

20 25

b The number of ICs and subjects involved in the cluster were distrib-
uted across musical features. ¢ The spectra of each components were
located in delta or beta band. Different curves represent different ICs
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there was one subject involved in this cluster respectively.
In addition, the number of ICs correlated with the musical
features was more than the number of participants since
there were 20 ICs for each subject.

Alpha-Specific Network

Figure 6 displays relatively large brain activity in the bilat-
eral occipital lobe according to the spatial map. As can be
seen, the oscillations of this pattern were dominated by alpha
rhythm (focusing on 10 Hz) with few ICs located in Delta
band. There were eight participants appearing alpha-specific
occipital networks under free-listening to music. The second
row of the Table 2 shows the subjects involved in the net-
works linked with each musical feature.

Delta-Beta-Specific Network

Figure 7a illustrates increased activity linked with musical
features in bilateral prefrontal gyrus (PFG). The spectrum
(Fig. 7c) shows both beta and delta oscillations recruited
these areas across participants. The delta-beta-specific net-
works were found in eight subjects. Mode was associated
with this brain networks among subjects 2, 3, 4, 6, 7 and 9.
The networks of subjects 4, 5, 7, 9 and 11 were correlated
with Fluctuation Centroid (see the third row of Table 2).

Cluster#1
2 2
4
4
% 6
g 6 8
3
8 10

BERT

Cluster#2

Discussion

In this study, we investigated spatial spectral profiles of brain
networks during music free-listening. To this end, we pro-
posed a novel method combing spatial ICA, source localiza-
tion and music information retrieval. EEG data were recorded
when participants listened to a piece of music freely. Firstly,
we applied STFT to preprocessed EEG data. After this, an
inverse operator was obtained using source localization and
the sensor-space data was mapped to source-space data. Then
complex-valued ICA was performed to extract spatial-spectral
patterns. The stability of ICA estimate was evaluated using a
complex-value ICASSO. Meanwhile, the temporal evolutions
of five long-term musical features were extracted by the com-
monly used MIRtoolbox. Following this, the spatial-spectral
ICs related to music stimuli were chosen by correlating their
temporal course with the temporal course of musical features.
To examine the inter-subject consistency, a cluster analysis
was applied to spatial patterns of the retained ICs. Overall, our
results highlighted the frequency-dependent brain networks
during freely listening to music. The results are consistent
with previous findings published in other studies (Alluri et al.
2012a, b; Cong et al. 2013a, b; Janata et al. 2002).

It was found that beta-specific brain networks in the bilat-
eral STG emerged from dynamic processing of musical fea-
tures (see Fig. 4). The bilateral STG were mostly activated

Cluster#3

10

12 14 2 4 6 8

Fig.5 Correlation coefficients matrix among spatial maps of the ICs
in each cluster. The mean correlation coefficient in cluster#1 is 0.642
and the corresponding standard deviation (SD) is 0.1238. For clus-

10

Comp#

8 10 12 14 16 18
Comp#

12

14

16 18 2 4 6

ter#2 the mean is 0.7125 and SD is 0.0572. For cluster#3, the mean is
0.8084 and SD is 0.0747

Table 2 Participants involved

. . Cluster Musical features
in each cluster across musical

Total subjects

features among 14 subjects Fluctuation centroid Fluctuation entropy Key clarity Mode Pulse clarity
(from 1 to 14)
#1 24512 2 12313 4 5 7
#2 181014 81113 7814 281114 11013 8
#3 457911 36 569 234679 17 8
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B The number of ICs & subjects
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Fig.6 Cluster#2: Alpha—Delta-specific networks. a The centroid of
the spatial maps in the cluster, which reflected a spatial pattern across
most of participants. As can be seen that the bilateral occipital cortex
was activated (from left to right: left hemisphere, top view, right hem-

during music listening, which was involved in long-term
musical features processing. It was interesting to note that
the beta oscillations were enhanced in this bilateral spatial
profile (see Fig. 4c). This spatial-spectral pattern appeared
more related with Fluctuation Centroid and Key process-
ing than Fluctuation Entropy, Mode and Pulse Clarity (see
Fig. 4b). The same areas were found in previous studies
where timbre-related features were correlated with activa-
tions in large areas of the temporal lobe using fMRI (Alluri
et al. 2012a, b). Besides, early MEG studies demonstrated
that cortical rhythm activity in beta band activity (15-30 Hz)
was tightly coupled to behavioral performance in musical
listening and associated with predicting the upcoming note
events (Doelling and Poeppel 2015). Since beta bands have
been associated with motor and rhythmic processes, listeners
may voluntarily engage in mental activities related to motor
during listening to segments engaged in dancing (Meyer
et al. 2006; Poikonen et al. 2018b). For the participants who
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A Spatial Map

C The normalized spectrum of each IC

Delta Alpha Hand

band
S 08f -
=
._é_
< 0.61 1
kel
0}
N L i
= 04
S
o]
Z 0.2f ]

O - il S 3 Y > =
0 5 10 15 20 25 30 35

Frequency (Hz)

isphere). b The number of ICs and subjects involved in the cluster
were distributed across musical features. ¢ The spectra of each com-
ponents were located in delta or beta band. Different curves represent
different ICs

like dancing, music is comprehensive and collaborative.
Music forms a setting in which dancers produce movements
that are coherent with (or intentionally in contrast to) the
prevailing sound in terms of rhythm, sentiment, and move-
ment style (Poikonen et al. 2018a). When freely listening, a
participant might be more focused on the gist of the music
than to the sequence of an individual instrument, melody
contour, or rhythmic pattern. Importantly, in the current
study, no participant was familiar with the presented music
stimuli. Thus, the beta-specific brain networks emerging in
the bilateral STG could reflect the activation of higher-level
brain processes (Pearce et al. 2010; Poikonen et al. 2018b).

We also observed alpha oscillatory visual networks (see
Fig. 6), which is in line with our previous study (Cong et al.
2013a, b). Alpha oscillations play an important role in basic
cognitive process, which is linked to suppression and selec-
tion of attention (Klimesch 2012). Event-related brain acti-
vation in alpha band has been found in studies with sensory
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or motor tasks and with attention and working memory
tasks. For example, alpha event-related synchronization was
showed over the leg area of the motor cortex while event-
related desynchronization in alpha was observed over the
hand area when participants performed hand-movement
tasks. This compensatory distribution of alpha activity dem-
onstrates that alpha oscillation in task-irrelevant regions is
associated with cortical disengagement (Pfurtscheller 2003).
That could be the reason that the alpha-specific power over
visual cortices was larger when attention was focused on the
auditory stimuli.

A delta-beta oscillatory network in prefrontal cortex were
also observed during listening to music (see Fig. 7). Helfrich
et al. argued that the prefrontal cortex provides the structural
basis for numerous higher cognitive functions and oscil-
latory dynamics of prefrontal cortex provide a functional
basis for flexible cognitive control of goal-directed behavior
(Helfrich and Knight 2016). Besides, prefrontal cortex has

B The number of ICs & subjects

20
- Total components
:l Total subjects
151 T
—
[0}
£
= 101 T
Z
0 Fluctuation Fluctuation Ke Mode Pulse
Centroid Entropy y Clarity

Fig.7 Cluster#3: Alpha—Beta-specific networks. a The centroid of
the spatial maps in the cluster, which reflected a spatial pattern across
most of participants. As can be seen that the bilateral prefrontal cor-
tex was activated (from left to right: left hemisphere, top view, right

A Spatial Map

the function of entrainment as a mechanism of top-down
control (Helfrich and Knight 2016). Our findings provided
the evidence that the higher cognitive function with specific
rhythms were involved in continuous and naturalistic music.
Janata et al. identified an area in the rostromedial prefrontal
cortex as a possible brain units for tonal processing (Janata
et al. 2002). In addition, some studies demonstrated that
oscillations in the delta and beta bands were instrumen-
tal in predicting the occurrence of auditory targets (Arnal
et al. 2015; Doelling and Poeppel 2015). Music is shown
to be a powerful stimulus modulating emotional arousal, an
increase of posterior alpha, central delta, and beta rhythm
was observed during high arousal (Mikutta et al. 2012;
Poikonen et al. 2016a, b; Poikonen et al. 2016a, b). That
may explain why the delta—beta oscillations in this study
appears in prefrontal cortex (Fig. 7).

From the methodology consideration, most of these stud-
ies investigated one pattern of the spatial spectral profile

C The normalized spectrum of each IC

Delta Beta band

band

Normalized Amplitude

Frequency (Hz)

hemisphere). b The number of ICs and subjects involved in the clus-
ter was distributed across musical features. ¢ The spectra of each
components were located in delta or beta band. Different curves rep-
resent different ICs
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and did not examined the interplay between brain networks
and spectral mode. In contrast, we studied the interactions
between brain region and cortical oscillations and found
the brain networks during music listening were frequency-
dependent. In terms of our proposed approach for analysis of
frequency-specific networks during naturalistic music listen-
ing, we can credibly find the spatial-spectral patterns elic-
ited by musical stimulus. There are some related approaches
using spatial ICA in a variety of specific techniques to inves-
tigate the RSNs under MEG data. Nugent et al. proposed a
method named as MultibandICA to derive frequency-spe-
cific spatial profile in RSNs. However, six frequency bands
(delta, theta, alpha, beta, gamma, high gamma) firstly need
to be extracted from the MEG data and were concatenated in
certain dimensionality; ICA was then performed to concat-
enated data (Nugent et al. 2017). Similar methods were pro-
posed in (Sockeel et al. 2016). Here distinctly, the proposed
approach is completely data-driven and does not require
pre-define the frequency band. Another important asset of
our study is that the clustering was applied to the spatial
maps to examine the inter-subject consistency in proposed
method. The correlation coefficients were then computed in
each cluster. We observed that the individual spatial-spectral
profiles in every retained cluster were similar but the corre-
sponding time courses were different. This is different from
analysis of event-related potential (ERP) where temporal
ICA components sharing identical spatial profiles might
be similar. The differences might be resulted from differ-
ent responses of participants under real-word experiences.
In the future, we will attempt to develop group spatial ICA
to analyze group-level data where the individual data are
concatenated in time dimension.

Conclusion

In this study, we introduced a novel framework with sev-
eral techniques including Fourier ICA, source estimation,
acoustic feature extraction, and clustering for exploiting the
spectral—spatial structure of brain during naturalistic stimu-
lus. A complex-value ICA applied to source-space time—fre-
quency representation of EEG data. Following this, a modi-
fied ICASSO was performed to evaluate the stability of ICA
estimate and a cluster analysis was applied to examine the
inter-subject consistency. The identified networks involved
in music perception were in line with those previous studies.
Further, we found that brain networks under music listen-
ing were frequency-specific and three frequency-dependent
networks associated with processing musical features were
observed.
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Appendix

The features were extracted from the stimulus on a frame-
by-frame basis (see (Alluri and Toiviainen 2010) for more
details). A brief description of each of the acoustic features
is presented below. A detailed explanation can be found in
the user manual of the MIRToolbox (Lartillot and Toivi-
ainen 2007).

Mode strength of major of minor mode.

Key Clarity the strength of the estimated key, computed
as the maximum of cross-correlations between the chroma-
gram extracted from the music and tonality profiles repre-
senting all the possible key candidates.

Fluctuation Centroid geometric mean of the fluctuation
spectrum representing the global repartition of rhythm perio-
dicities within the range of 0—10 Hz, indicating the average
frequency of these periodicities.

Fluctuation Entropy Shannon entropy of the fluctua-
tion spectrum (Pampalk et al. 2002) representing the global
repartition of rhythm periodicities. Fluctuation entropy is
a measure of the noisiness of the fluctuation spectrum. For
example, a noisy fluctuation spectrum can be indicative of
several co-existing rhythms of different periodicities, thereby
indicating a high level of rhythmic complexity.

Pulse Clarity the strength of rhythmic periodicities
sound, representing how easily the underlying pulsation in
music can be perceived.
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Recent continuous task studies, such as narrative speech comprehension, show that fluctuations in brain functional
connectivity (FC) are altered and enhanced compared to the resting-state. Here, we characterized the fluctuations in
FC during comprehension of speech and time-reversed speech conditions. The correlations of Hilbert envelope of
source-level EEG were used to quantify FC between spatially separate brain regions. A symmetric multivariate
leakage correction was applied to address the signal leakage issue before calculating FC. The dynamic FC was
estimated based on a sliding time window. Then, principal component analysis (PCA) was performed on individually
concatenated and temporally concatenated FC matrices to identify FC patterns. We observed that the mode of FC
induced by speech comprehension can be characterized with a single principal component. The condition-specific
FC demonstrated decreased correlations between frontal and parietal brain regions and increased correlations between
frontal and temporal brain regions. The fluctuations of the condition-specific FC characterized by a shorter time
demonstrated that dynamic FC also exhibited condition-specificity over time. The FC is dynamically reorganized and
FC dynamic pattern varies along a single mode of variation during speech comprehension. The proposed analysis
framework seems valuable for studying the reorganization of brain networks during continuous task experiments.

Keywords: Reorganization; functional connectivity; naturalistic speech; speech comprehension; natural paradigms.

integrate and parse information.® 2 Previous studies have

1. Introduction identified a group of high-order brain regions, including
During real-life experiences (e.g., watching a movie or the temporal parietal junction, posterior cingulate cortex,
listening to a speech), it is necessary to continuously temporal pole, and medial prefrontal cortex, which can
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accumulate and integrate  information  during
comprehension of a narrative story.> 4 Although the
neural correlation of local information processing has
been well investigated in previous studies, integrating
information at the whole-brain level may also be critical
to understanding brain functions.> & Advances in
methodology and brain imaging technology have enabled
us to examine how the brain mediates information flow
in large-scale functional networks during continuous task
execution.® 10

Function connectivity (FC), based on statistical
interdependencies between signals recorded using
neuroimaging technology,*** is a widely-used approach
to describe the large-scale configuration of brain
functional activity.'>*® FC modes provide fingerprints for
the organization of functional brain networks during
resting state’®2! and continuous task performance.??%
Recent studies have demonstrated that there is a robust
relationship between the functional networks during the
resting-state and continuous task execution.?6-2
Particularly, naturalistic task paradigms, such as movie-
watching? % and comprehension of a narrative story,®*
31 are interesting because of their ecological validity.
Some studies have shown that FC is much reliable to
demonstrate distinct individual differences when subjects
involved in the naturalistic paradigm. For example,
Londei et al. found that dynamics of the connectivity
patterns within and toward somatosensory and motor
areas are modulated by the degree of reproducibility of
auditory speech material.®? A systematic reconfiguration
of the cortical interactions, with changes in functional
network assignments, has been demonstrated during
challenging listening situations.® In addition, Broderick
and colleagues applied an approach based on a
computational model to low-frequency noninvasively
electroencephalographic (EEG) data recorded from
subjects when they listened to narrative speech; and a
prominent component was produced, which was very
sensitive to whether or not subjects understood the
speech they heard. Their results showed that the human
brain responds to the contextual semantic content when
successfully comprehending naturalistic ~ speech.3
However, electrophysiological network connectivity
between different brain regions for such low-frequency
oscillations has been lacking for continuous speech.
Furthermore, the condition-specific changes and
increased reliability of functional brain connectivity may
be induced by the task-dependent involvement of specific

brain areas? 3 and reconfiguration of brain network may
emerge during successful comprehension of narrative
speech.®® Based on these studies, we describe an
approach for examining the brain network connectivity at
low-frequency oscillations during speech
comprehension. We hypothesized that distinct modes of
brain networks would emerge and the reconfiguration of
FC during comprehension of speech could be quantified
in terms of systematic fluctuations in FC patterns.

In the present study, we used correlation of Hilbert
envelope as a means to quantify FC between spatially
separate brain areas. This metric has been used widely in
recent years®®3® and has been characterized as an
‘intrinsic mode’ of functional coupling in the human
brain. The high-density EEG were recorded and able to
measure high spatiotemporal resolution networks.>: 40
We calculated the whole-brain connectivity between
separate brain regions, which are predefined based on
Desikan-Killiany atlas.** To examine the reconfiguration
of FC, we analyzed the fluctuations in grand averaged
(over time) and dynamic (time-resolved) FC during
listening to narrative speech and time-reversed speech
(TR-speech). Here, the TR-speech can be used as a
control to exclude brain processes induced by the low-
level features of speech since it has the same long-term
amplitude spectrum as normal speech but is not perceived
as intelligible speech.*? Principal component analysis
(PCA) was used to characterize the variations in FC
patterns over subjects. PCA and related techniques have
been applied to describe FC fluctuations during the
resting-state,® movie-watching?® and whole-brain
connectivity dynamics.** 4 Based on the projections of
scores on the principal components (PCs) for the
individual subject, we identified FC modes dependent on
the successful comprehension of speech condition.
Furthermore, to examine whether fluctuations in grand
averaged FC reflected a constant (temporally stationary)
functional state or the occurrence of functional patterns
altering over time, we extended our analysis beyond
grand-average FC states and investigated the temporal
fluctuations in FC states using dynamic FC based on a
sliding-window technique. To examine the role of time-
locked events on dynamic FC during speech-
comprehension condition (similar to inter-subject
synchronization), we estimated the similarity between
instantaneous dynamic FC (each windowed FC) across
conditions and runs.



2. Material and methods

2.1. Study design

The open access EEG data used in this paper have been
described in details elsewhere.®* 42 There were 10
subjects and they took part in two experiments. During
the experiments, subjects were introduced to listen to a
narrative speech and time-reversed speech, separately.
The EEG data were recorded during listening task. In the
first experiment (condition), subjects underwent 20 runs
(trials), each of which was of the same length (less than
180 seconds), in which they listened to a professional
audio-book edition of a classic American work of fiction
(in this study we just used 2 runs to examine the dynamic
organization during natural speech-comprehension). The
audio was read by a single American English speaker.
The runs retained the storylines, with neither duplicates
nor discontinuities. During the audio-playing, the mean
speech rate was 210 words/min. In a similar way, during
the second experiment subjects were presented with the
same runs in the same order, but with each of the speech
stimuli played in reverse (time-reversed speech). All
speech stimuli were played monophonically at a
sampling rate of 44.1 kHz using Sennheiser headphones
in a sound-attenuated room when participants maintained
fixation on a cross centered on a screen and minimized
eye blinking and other movement activities.

2.2. Data description and preprocessing

During all experiments, dense array 128-channel EEG
data (plus two mastoid channels) were recorded at a
sampling rate of 512 Hz using a BioSemi ActiveTwo
system. Offline, the data were filtered with a band-pass
filter between 1 and 30 Hz since initial investigation of
the frequency range uncovered that no useful information
was observed in higher frequencies, and down-sampled
to 128 Hz. We then re-referenced EEG data to the
common average channels*® in MATLAB2016b. To
identify bad channels with artifacts noise, the EEG
signals were visually inspected and the standard
deviation of each channel time series was compared with
that of the spherical surrounding channels. Bad channels
with excessive noise were interpolated using a spherical
spline model in EEGLAB.# Independent component
analysis (ICA) was performed to remove ocular EEG
artifacts.*s 4
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2.3. Source reconstruction

Following preprocessing, source localization was
performed using an open access software Brainstorm.%
The forward model, describing the signal mode produced
by the unit dipole at each predefined position on the brain
model surface, was computed using the symmetric BEM
method®* based on default Colin27 MRI template
provided by the Montreal Neurological Institute (MNI).
Preprocessed data were adopted to compute the inverse
model, which was estimated by the weighted Minimum-
norm Estimation (WMNE).5? It has been proved that
WMNE is well-established to estimate large-scale FC
networks since it solves the volume conduction problems
and thus reduces the correlation of spurious signal.5% 54
When calculating the inverse operator, we adopted the
configuration of parameters described in the previous
study®*: (1) the current source orientations were
constrained to perpendicular to the cortical surface; (2)
the depth weighting algorithm was adopted to
compensate for any deviations affecting the computation
of superficial sources® *; and (3) a regularization
parameter, 22 = 0.1 was adopted to minimize numerical
instability, reduce the wMNE sensitivity to noise, and
effectively achieve a spatially smoothing estimation.>® In
this procedure, source-level time series at 15,002 voxels
were obtained. The cortical surface was then parcellated
into 68 anatomical regions of interest (ROIs) based on the
Desikan-Killiany atlas®® and the center of mass of each
area was defined as a representative time series to be used
to calculate FC.

2.4. Functional connectivity estimation

We aimed to perform an all-to-all whole-brain FC
analysis by estimating connectivity between all possible
pairs of Desikan-Killiany regions. In M/EEG, a
significant confound of source level connectivity is that
the ill-posed inverse problem plus inaccuracies in the
forward solution, leads to a degree of spatial blurring and
mislocalization of sources.®”-%8 This confound means that
two source-reconstructed time series (e.g. from two brain
regions) may be significantly correlated, purely due to
‘signal leakage’ (for review see Ref.%). The estimated
connectivity between separate brain regions may not be
accurate without careful control.5® Signal leakage issue
has been well investigated and there are now a lot of
techniques for leakage reduction.®”57- % Most approaches
are based on the fact that leakage manifests as a zero-time
lag linear superposition of underlying signals so that
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although the true zero-lag connection is sacrificed,
orthogonalization of source-reconstructed signals can
effectively remove leakage.5® Colclough et al. recently
proposed an effective method of simultaneously
orthogonalizing over a set of multiple brain regions.°
Based on their study, here, signals (time-courses) from
all N=68 brain areas are symmetrically orthogonalized in
a single calculation. The complete mathematical details
of the procedure can be found in previous study.®® In
brief, two steps need to be conducted in the method: First,
find a set of orthogonal time-courses that are closest to
the data matrix and have a simple analytical solution.
Second, the solution is finessed by iteratively adjusting
the lengths and orientations of the corrected vectors until
the solution is as close as possible to the uncorrected
time-courses.®® This results in a set of matrices, whose
rows consist of the orthogonalized time-courses for all 68
Desikan-Killiany brain areas. Following signal leakage
correction, the Hilbert transformation was applied to
extract the amplitude envelopes of the time-courses. The
FC matrices were constructed based on Pearson
correlation coefficient between all pairs of the amplitude
envelopes of ROIs in terms of grand average FC. To
extract dynamic FC (time-resolved FC), we applied a
sliding window approach.* %2 The window length was
set as 5 s and the overlap was 4 s between two adjacent
windows. Within each window, we calculated
connectivity between all pairs of Desikan—Killiany
regions. It should be noted that the signal leakage
reduction step was performed on each time window
separately (separate orthogonalization for each window),
rather than on the whole time series during grand average
FC analysis. This conduction can be explained in
previous study,% where it has proved that leakage relies
heavily on signal to noise ratio (SNR) and the SNR is
different in different time windows.

2.5. Principal component analysis

During grand averaged FC analysis, the FC matrices
were calculated based on Pearson correlation between all
pairs of the amplitude envelopes of 68 ROIs (over whole
time) for all subjects and runs (see Section Functional
connectivity estimation).

To perform PCA, the lower triangular parts of FC (i.e.
68 x (68 —1)/2  connections)  matrices  were
concatenated across subjects/runs (10 x 4 subjects/runs)
resulting in the group-level connectivity matrix with
dimensions 2278 x 40 (number of connections X

number of subjects/runs). PCA was then performed to the
resulting group-level connectivity matrix. To determine
the components which reflect only noise, the PCA
analyses were repeated for 1000 surrogate time-courses
for each subject/run. The surrogate time-courses of each
individual subject were phase-randomized and the
properties of the surrogate time-courses were preserved
in spectral domain.?® % The dimensionality of the data
was represented by the proportion of explained variance
of the principal components (PCs) that are greater than
those of the surrogates. Since the data were decomposed
by PCA into orthogonal axes with related projections
(scores) of each individual observation (subject or run in
this study), we used these projections scores to
characterize the principal components. The PC
associated with speech-comprehension condition was
considered as the one demonstrating clear separation
between different conditions and significant difference
levels based on the PC projection scores (i.e., the scores
higher than 0 represented the speech-comprehension
runs, whereas the scores less than 0 presented the time-
reversed speech runs).

To examine the consistency of PCs, the analysis was
repeated using 2 separate runs. For both runs, the group-
level connectivity matrices contained the concatenated
lower triangular FC matrices of 1 time-reversed speech
run and 1 speech-comprehension run (i.e., 2278 x 20
matrices). The consistency was characterized as Pearson
Correlation of the components and their projection scores
across runs (See Figure 1G-H).
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Fig. 1. A The analysis pipeline using principal component analysis (PCA). The time-courses of ROIs were firstly corrected to remove
signal leakage; then, the FC matrix was constructed using Hilbert envelope correlation; finally, the PCA was performed over FCs of 2
time-reversed speech and 2 speech-comprehension condition concatenated across 10 subjects. B Explained variance by each PC (black
line) and phase-random surrogates (gray line). The first 4 PCs were above the noise level (Surrogate data); the first PC (E) explained
39.8% of the variation, while the second (F) explained 14.6%. C The projections of first two PCs and D Boxplot of first 2 PCs projections,

showing that the first component is dependent to speech-comprehension condition.

E-F The first 2 components and their 3-D

representations with threshold (top 5%) for visualization. G-H The similarity of the first 2 PC between two separated run analysis.

2.6. PCA trajectories of dynamic FC

The PCA was repeated for average dynamic FC to
establish the link between grand averaged FC (whole
time correlation) and dynamic FC. After determining the
grand average condition-specific dynamic FC
component, we applied PCA to concatenated dynamic
FC matrices over time for each subject (i.e., 2 time-
reversed speech and 2 speech-comprehension runs). The

condition-specific temporal components (connectivity)
were determined as the PC exhibiting the highest
similarity to the grand average condition-specific
dynamic FC components. Then, we measured the
trajectories (i.e., fluctuations of PC scores over time) of
the condition-specific temporal components of
individuals. In this study, the term “trajectory” was better
than “scores” to highlight the fact that the PCA was
applied to time-concatenated connectivity matrices. We
examined whether the PC exhibiting highest similarity to
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the condition-specific  connectivity differentiated
between  time-reversed  speech and  speech-
comprehension trajectories. We characterized the
condition-specific differences by computing the average
Euclidean distance between the median trajectories of the
time-reversed speech and speech-comprehension
conditions. The Euclidean distances between median
trajectories were defined as the squared difference
between median PC projection scores of time-reversed
speech and speech-comprehension trajectories. For each
subject, to evaluate the significance of the distinction, we
compared the condition-specific Euclidean distance with
those of the surrogates. We randomly shuffled the
trajectories of each individual subject and then
reassigned them into two groups. The p-values were
assessed by comparing the distance between condition-
specific trajectories with the distance of the surrogates.
Since the trajectories of each individual PC are time-
dependent, we evaluated the distinction between
different conditions across subjects by computing the
median distances across runs and conditions. For each
individual subject, the median distance of trajectory
between  time-reversed speech and  speech-
comprehension conditions was computed. Next, the
distances between two separate runs of time-reversed
speech and speech-comprehension conditions were
computed. Finally, we adopted permutation tests to
compare the average distance across runs and conditions.

2.7. Dynamic FC similarity across conditions and
runs

During  continuous  perception, human  brain
automatically divides experiences into discrete events.®
To examine the role of time-locked events on dynamic
FC in speech-comprehension condition (similar to inter-
subject synchronization), we estimated the Pearson
similarity between instantaneous dynamic FC (each
windowed FC) across conditions and runs. For each time
window, we computed the Pearson similarity between the
FC matrix of a single subject (k) and the average FC
across the remaining of the subjects (n # k). The average
dynamic FC was computed to test the FC similarity in 3
different circumstances: across conditions (i.e., if subject
k is at time-reversed speech run 1, the average dynamic
FC was computed for speech-comprehension run 1),
across runs (i.e., if subject k is at time-reversed speech
run 1, the average dynamic FC was computed for time-
reversed speech run 2) and within runs (i.e., if subject k

is at time-reversed speech run 1, the average dynamic FC
was computed for time-reversed speech run 1) (Fig 3A).

2.8. Statistical analysis

The comparisons between conditions (time-reversed
speech vs. speech-comprehension) were performed using
permutation tests since the size of samples remines
relatively small. During the permutation tests, the
randomization was also carefully controlled to keep the
dependence across two conditions.

To evaluate the association between measures,
Spearman’s correlations were used due to limited number
of samples. Pearson correlation was applied as a measure
of similarity between connectivity matrices. (i.e., PC
scores, FCs, and dynamic FCs).

3. Results

To characterize the fluctuations in FC across subjects
during time-reversed speech and speech-comprehension
conditions, PCA was applied over subjects (Figure 1A).
PCA  decomposed high-dimensional group-level
connectivity matrices into orthogonal principal
components that explained the most variance of the data.
The projections provided a score for each individual
observation (i.e., subject/run) along the PCs. We
performed PCA on concatenated vectorized connectivity
matrices for all subjects during two separate runs of time-
reversed speech and speech-comprehension conditions.
We then examined the scores (i.e., projections of PCs by
individual subjects) during two conditions.

3.1. Distinct modes of variation in FC during
speech comprehension

The first principal component (PC-1), explaining 39.8%
of the variance (Fig. 1B), was able to distinguish the
speech-comprehension condition from time-reversed
speech condition. The projection scores of PC-1 were
significantly different between two conditions (p <
0.001) (Fig. 1C-D). We considered this principal
component as a condition-specific PC. This result
demonstrated that the condition-specific changes in FC
can be explained with a single pattern of variation (PC-
1). The second principal component (PC-2) (Fig .1B),
explaining 14.6% of the variance, reflected a FC mode
that was preserved across runs. There was no significant
difference in the scores of PC-1 between two conditions
(Fig. 1C-D). This result showed that the principal
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Fig. 2. FC based on a sliding-window approach. A The pipeline of dynamic FC analysis. The source-reconstructed time-courses were
leakage-corrected within each window (window length 5 s, overlap 4 s). Dynamic FCs were estimated based on windowed Hilbert
envelop correlation. B The pipeline describing the PCA applied to average dynamic FCs across subjects (top), where the static adjacent
matrixes were concatenated across subjects, and dynamics FCs across time for each subject (bottom). A condition-specific component
was determined based on the maximum similarity between dynamic FC components and average condition-specific FC component (D).
The grand average component and dynamic condition-specific component were very similar across subjects (E). C Based on the
trajectories of condition-specific dynamic FC components, the distance between the median trajectories of time-reversed speech (TR
speech) and speech-comprehension (Speech) conditions were computed. F Example trajectory for single individual (Subject 4). G The
distance between the median trajectories of TR speech and Speech conditions compared to the histogram of the distances for 1000
randomly split trajectories (Subject4) and | for all subjects. H The median trajectory distances between TR speech and Speech conditions,
between 2 TR speech runs and between 2 Speech runs. The distance between conditions was significantly higher than the distance
between runs (permutation tests, 10000 permutations). *** represents p < 0.0001, n.s. represents p > 0.05.

component of variation in FC reflected the common To examine the consistency of the condition-specific
connectivity pattern over two conditions. PCs over runs, PCA analysis was repeated for each run
separately and the Pearson similarities between PCs
PCA analysis was repeated for 1000 surrogate FC across runs were quantified. For each run, the condition-
matrices across all subjects to determine the components specific PCs showing high consistency across runs were
explaining a significant fraction of variance (see section identified. The similarities between PCs were
Principal component analysis). The explained variance significantly correlated across runs for condition-specific
of the first 4 components was larger than the explained FC and common FC (r=0.885 for PC-1 component,
variance of surrogate FC matrices. Considering a large r=0.794 for PC-2 component) (Fig. 1G-H). These results
amount of variance explained by the first 2 PCs, we chose showed that the condition-specific PC and the related
the 2 PCs for further analysis. The rest of the components projection scores were consistent across runs.

did not exhibit any specificity regarding the speech-
comprehension condition and were not presented.
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3.2. Condition-specific FC trajectories in dynamic
FC

The grand average FC metric is not able to distinguish
between a temporally stationary pattern of FC and
fluctuations in FC. Thus, we analyzed dynamic
fluctuations in FC (also known as time-resolved FC). In
the current study, we examined the hypothesis that brain
FC continuously reconfigured during speech-
comprehension. The dynamic FC was estimated based on
a sliding window technique. We used envelope
correlation as a means to quantify connectivity between
spatially separate brain regions (see section Functional
connectivity estimation). This metric has been used
extensively in recent years and has been described as an
‘intrinsic mode’ of functional coupling in the human
brain. Here, we set window length as 5 s and overlapped
with 4 s between adjacent frames (see section Discussion
about the window length). First, the source-localized
time series of separate brain regions were segmented into
overlapping time windows. Second, leakage reduction
step was applied to each window, separately. Hilbert
envelope was extracted from the corrected time series.
Finally, we computed ‘all-to-all’ connectivity between
separate brain regions (Fig. 2A).

To establish the link between the dynamic FC
analyses and grand average FC (whole time correlation).
The average dynamic FC across time was calculated and
PCA was performed over subjects. The analysis results
suggested that the PC based on averaged dynamic FC
also showed condition specificity (Fig. 2). In addition,
condition-specific PC of average dynamic FC was similar
to those grand average FCs (r=0.92) (Fig. 2E). Thus, the
condition specific FC patterns from average dynamic
connectivity were in line with those based on grand
average FC.

For each participant, PCA was applied to the dynamic
FCs over time (Fig. 2B). We considered the condition-
specific component for each individual subject as the one
that was the highest correlated with the grand average
condition-specific component (Fig. 2D). For most
subjects, the trajectories (PC projection scores) of the
condition-specific components reflected a significant
difference between conditions (Fig. 2H). For each
subject, we characterized the condition-specificity by
comparing the median of trajectories (median PC
projection scores) during the time-reversed speech and
the speech-comprehension conditions (Fig. 2C). Then,
we measured the Euclidean distance between the median

trajectories of TR-speech and speech conditions (Fig.
2C). We compared the distance between TR-speech and
speech median trajectories with the distance between
1000 trajectories of randomly shuffled groups (Fig. 2G-
1). The results of all subjects demonstrated a significantly
larger distance between TR-speech and speech
trajectories than any other trajectories of randomly
shuffled groups (p<0.0001) (Fig. 2I). Due to the time-
dependence of the condition-specific PC trajectories, we
evaluated the significance of the median distances of
trajectory between conditions/runs across subjects. We
observed that the median distance across conditions (i.e.,
TR-speech/speech conditions) was significantly greater
than the median distance across runs (i.e. TR-speech-
runl/TR-speech-run2 and speech-runl/speech-run2)
(p<0.0001, permutation tests, 10000 permutation runs)
(Fig. 2H). We observed no significant difference between
the median distance across runs for time-reversed speech
and speech-comprehension conditions (Fig. 2H). These
results suggested the emergence of a preserved FC mode
during speech-comprehension condition at a short time
scale.

3.3. Condition-specific FC patterns within and
across runs

The first principal component (PC-1), explaining 39.8%
of the variance (Fig. 1B), was able to distinguish the
speech-comprehension condition from time-reversed
speech condition. The projection scores of PC-1 were
significantly different between two conditions (p <
0.001) (Fig. 1C-D). To investigate the role of time-
locked events on FC dynamics during speech-
comprehension (similar to inter-subject synchronization
analysis), we computed the Pearson similarity between
dynamic FCs over conditions and runs. Briefly, for each
time window, we calculated the similarity between the
FC matrix of an individual subject (k) and the average
FCs across the remaining subjects (n # k). The average
FCs were computed to examine the FC matrix similarity
in 3 different cases: across conditions (e.g. if subject k is
at time-reversed speech run 1, the average FC matrix was
computed for speech-comprehension run 1), across runs
(e.g., if subject k is at time-reversed speech run 1, the
average FC matrix was computed for time-reversed
speech run 2) and within runs (e.g., if subject k is at time-
reversed speech run 1, the average FC matrix was
computed for time-reversed speech run 1) (Fig. 3A).
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Fig. 3. Time-resolved similarity between dynamic FCs across conditions and runs. A The analysis pipeline. For each individual subject
the dynamic FC at each window was compared to the average dynamic FC across the rest of subjects at the same window. Blue
lines/shades represent that the average dynamic FCs were computed for different condition (i.e. if subject k is TR speech, average
dynamic FC were computed across subjects for Speech condition (excluding subject k)). Red lines/shades represent that the average
dynamic FCs were computed for the same condition but different runs (i.e. if subject k is at TR Speech in run 1, average dynamic FC
were computed for the TR speech run 2). Green lines/shades represent that the average dynamic FCs were computed for the same
condition and the same run (i.e. if subject k is at TR speech in run 1, average PLVs were computed for the TR speech run 1). B-C During
speech-comprehension, the similarity between dynamic FCs was significantly lower across conditions, but the similarity between FCs
was significantly higher within runs compared to across runs. D-E During TR speech the similarity between dynamic FCs were
significantly lower across conditions, but there was no significant difference between the similarities across runs. The histograms indicate
the distributions of similarity measures over time, whereas *** represents the p < 0.0001, ** represents the p < 0.001 assessed by
permutation tests across subjects. n.s. represents p > 0.05.
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The similarity across runs both for TR-speech and
speech-comprehension conditions was significantly
larger than the similarity across conditions (p<0.001 for
both runs: permutation tests, 10000 permutation runs)
(Fig. 3). This result confirmed the continuous functional
reconfiguration during speech-comprehension condition.
Additionally, this result also demonstrated that during
speech-comprehension, the similarity between dynamic
FC was higher, even when the subjects were listening to
different semantic content. The average similarity
between dynamic FCs demonstrated no significant
difference across runs for resting-state runs (p=0.54 for
run 1, p=0.28 for run 2, permutation tests, 10000
permutations) (Fig. 3D-E). In contrast, the average
similarity between dynamic FCs was significantly higher
for the same speech run than across runs (p<0.0001 for
run 1, p<0.001 for run 2, permutation tests, 10000
permutations) (Fig. 3B-C). These results showed that the
dynamics of FC during speech-comprehension reflected
both the effects of time-locked events and a continuous
reorganization of brain networks.

4. Discussion

This paper has investigated the reconfiguration of
functional  connectivity (FC) during  speech-
comprehension condition. The results demonstrated that
FC dynamic pattern under speech-comprehension varies
along with a single mode of variation. During the
comprehension of natural speech, the connectivity
pattern captures the variations over subjects, which
emerges as a continuous brain functional state across
time.

We adopted PCA to characterize the variations in FC
across subjects and conditions. We found that one of the
PCs (PC-2) reflected the common pattern of variations in
both conditions, whereas another PC (PC-1) reflected the
difference between time-reversed speech and speech-
comprehension conditions. The patterns of the
components characterized the intra- and inter-
hemispheric connectivity within occipital and temporal
regions as well as their connections with frontal and
parietal regions, which are line with increased brain
connectivity in language/auditory networks.5¢ 57 These
results demonstrated that the increased communication
between separate brain regions associated with auditory
processing and attention are primarily driven by the time-
locked events during comprehension of natural speech.

This characterization is consistent with the large-scale
auditory and sensory-motor networks emerging during
comprehension of natural, narrative speech.®? The
condition-specific component (PC-1) demonstrated
increased connectivity within sensory-motor areas and
reduced connectivity between frontal-parietal brain
regions and cingulate. The enhanced sensory-motor areas
connectivity reflects the ability to transform auditory
speech into appropriate sensory and  motor
representations. These results are in line with previous
studies showing brain functional reorganization during
comprehension of speech.®> 33  Furthermore, the
enhanced frontal-temporal connectivity may indicate a
strong functional cross-talk between ventral attention and
auditory regions. Previous studies also observed the
reconfiguration of a frontal-temporal network in
adaptation to cued speech comprehension, where related
frontal-temporal cortical regions were referred to as the
auditory-control network.

The result about emerging of a condition-specific
pattern in grand averaged FC may be not sufficient to
draw a conclusion about the reorganization of FC during
speech comprehension. Therefore, we examined how the
condition-specific component relates to the dynamic FC.
We applied a sliding window approach combining with
Hilbert envelop correlation between brain regions to
characterize dynamic FC over time. The findings also
showed condition-specific PC on grand average dynamic
FC across subjects and individual dynamic FC over time.
The trajectories of the condition-specific PCs
demonstrated that this PC might emerge as a stationary
pattern during comprehension of speech. This conclusion
was resulted from analyzing the similarity between
instantaneous dynamic FC and the average dynamic FC
across individuals under different runs/conditions. The
similarity was significantly higher when the individuals
were involved in the same conditions (i.e., TR-
speech/TR-speech and speech/speech) than they were in
different conditions (i.e. TR-speech/speech). In addition,
only during speech comprehension, the similarity of the
dynamic FC was higher for individuals in the same run
(i.e. run /run 2) than in the different runs (i.e. run 1/run
2). Overall, these results demonstrated that whole-brain
connectivity is reorganized over time. Previous studies
also observed that dynamics of FC states are highly stable
relying on the narrative of a story although the
connectivity patterns were similar over time.* Our results
showed that the dynamics of the distinct connectivity



states might display time-locked events. Previous studies
also demonstrated that humans automatically segment
experiences into discrete events during realistic,
continuous perception.® We speculated that the
reconfiguration of the brain networks in higher-order
regions might reflect the adaptation of the brain's intrinsic
networks to coordinate the large-scale flow of
information during speech comprehension. The
dynamics of the condition-specific component may
suggest that these changes of the FC patterns are related
to higher-level processing of the narrative.

The PCA analysis in our study revealed two different
modes of fluctuations that were related to the FC
condition-specific variations. Although the PC-2 was
consistent with the variations in empirical and model data,
the PC-1 demonstrated a substantial condition-
dependence. Furthermore, the PC-1 exhibited a similar
pattern with typical of default mode network (DMN),
which involves the medial frontal, temporal, and
cingulate cortices. These local regions continuously
change their module property in adaptation to the
comprehension of speech.3® We speculated a group of
temporal and cingulate cortices merge with other
temporal regions from the default mode network and
form a new common mode during comprehension of
speech. This result is consistent with the robust and
reproducible reconfiguration of default mode network
during narrative comprehension.*

From the methodological considerations, although a
lot of methods have been proposed to EEG analysis for
various applications, such as detection of epilepsy,
Alzheimer’s disease and so on,®®7"* the approach
proposed in the current paper provided an analysis
framework that used M/EEG imaging technique to
investigate the reorganization of brain connectivity
during naturalistic paradigm (e.g. music-listening,
movie-watching, story-listening and speech
comprehension). During analysis for the dynamic FC, the
window length (here 5 s), one core parameter, requires
setting. This parameter setting warrants further
discussion. An appropriate selection of window length is
important and stands for a trade-off between temporal
resolution and the accuracy of the derived connectivity
matrices.3® %8 In this study, elements of the connectivity
matrices are derived from the temporal correlation of
envelope time-courses within the window. It is well
known that the accuracy of the correlation between two
signals (r) is associated with the number of degrees of
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freedom (). Specifically, if assuming no underlying
correlation between two time series then the standard
deviation of correlation, o(r) = 1/\/5. In other words,
the noise in adjacency matrices is increased as n is
decreased. Furthermore, the number of degrees of
freedom in a fixed-window time series is independent of
the numbers of sample points. In the view of Fourier
theory, an upper limit on degree of freedom for envelope
data is given by n = B, &, in which § is the window
length and B,, denotes bandwidth of the carrier signal.
Typically, bandwidth is set by the scientific question to
be asked. For example, previous studies were interested
in beta band networks for self-paced motor study.%® 2
Here, o(r) = 0.08, which was deemed acceptable.
Future studies should keep this computation in mind.
Finally, it should be noted that there are several
limitations when interpreting the results in the current
study. The most important limitation of the current study
is the small number of the sample even though our results
are validated using both surrogate data and permutation
tests. Therefore, the results need replication in a separate
independent dataset. Furthermore, the design of this
study from previous studies did not allow us to compare
the obtained results with other conditions (i.e. different
narrative speech). Also, the current study did not allow
us to compare the results with resting-state since the open
access data did not include the resting-state condition.
Future studies may study the variants of speech-
comprehension condition, different task performance or
other naturalistic paradigms (e.g., free music-listening,
movie-watching, etc.). When analyzing large-scale
neurophysiological networks using MEG/EEG, the
common problem is non-physiological spread of
electrical activity through volume conduction causing
spurious correlations between signals.” Here, we used
signal leakage reduction technique to address this
problem. This technique has been well studied and
believed to be an optimal approach for large-scale
functional connectivity analysis.®® 58 8 Yet, it should be
noted that the technique can only reduce the volume
conduction problem, not address it completely. Another
limitation of this study is the use of coarse (34 regions
per hemisphere), anatomically defined parcellation based
on default MNI MRI template. The simultaneous
individual MRI scanning may facilitate the co-
registration for EEG electrode. Additionally, we only
examined the functional connectivity at the band of 1-30
Hz as it has been shown low-frequency oscillations
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contribute to the naturalistic speech comprehension.®* 42
Recently it has been suggested that functional
connectivity is dependent on frequency band during the
task execution such as working-memory and self-paced
motor task.’> 7 In a future study, we will examine
whether  functional connectivity during speech
comprehension is frequency-dependent or not.

5. Conclusion

The brain FC is highly dynamic and able to adjust
topology on a very fine time-scale during changing
environment. Here, we proposed an analytical approach
and investigated the reconfiguration of the brain
functional networks during comprehension of natural,
narrative speech. Our findings demonstrated that FC
dynamic patterns under speech-comprehension vary
along with a single mode of variation. Furthermore, our
analysis method seems valuable for studying the
reorganization of dynamic brain networks based on
M/EEG data during natural task experiments.
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ARTICLE INFO ABSTRACT

Keywords: Efficient neuronal communication between brain regions through oscillatory synchronization at certain fre-
Tensor decomposition quencies is necessary for cognition. Such synchronized networks are transient and dynamic, established on the
MEG

timescale of milliseconds in order to support ongoing cognitive operations. However, few studies characterizing
dynamic electrophysiological brain networks have simultaneously accounted for temporal non-stationarity,
spectral structure, and spatial properties. Here, we propose an analysis framework for characterizing the large-
scale phase-coupling network dynamics during task performance using magnetoencephalography (MEG). We
exploit the high spatiotemporal resolution of MEG to measure time-frequency dynamics of connectivity between
parcellated brain regions, yielding data in tensor format. We then use a tensor component analysis (TCA)-based
procedure to identify the spatio-temporal-spectral modes of covariation among separate regions in the human
brain. We validate our pipeline using MEG data recorded during a hand movement task, extracting a transient
motor network with beta-dominant spectral mode, which is significantly modulated by the movement task. Next,
we apply the proposed pipeline to explore brain networks that support cognitive operations during a working
memory task. The derived results demonstrate the temporal formation and dissolution of multiple phase-coupled
networks with specific spectral modes, which are associated with face recognition, vision, and movement. The
proposed pipeline can characterize the spectro-temporal dynamics of functional connectivity in the brain on the
subsecond timescale, commensurate with that of cognitive performance.

Functional connectivity
Frequency-specific oscillations
Dynamic brain networks
Canonical polyadic decomposition

1. Introduction neuronal populations transmit information by coordinating their oscil-
latory activity with the oscillations of the receptor population at certain

The brain is composed of billions of interconnected neurons, forming frequencies (Vidaurre et al., 2018). Moreover, different oscillatory pat-

an extremely complex dynamic system in which populations of neurons
are organized into functional units with specific information-processing
capabilities (Babiloni et al., 2005; Hillebrand et al., 2012). Yet, effi-
cient neuronal coordination between these spatially separated units is
necessary for cognitive functions (Salinas and Sejnowski, 2001; Siegel
et al., 2012; Varela et al., 2001). The interactions among distributed
regions through oscillatory synchronization may provide a possible
mechanism of such coordination (Fries, 2005, 2015). In other words,

terns (i.e., different frequencies) provide the basis for different functions
(Buzséki and Draguhn, 2004; Vidaurre et al., 2018). Meanwhile,
phase-coupling between separate populations of neurons in specific fre-
quency rhythms has been well-established as a mechanism for regulating
the integration and flow of cognitive contents (Engel et al., 2013; Salinas
and Sejnowski, 2001; Vidaurre et al., 2018). It has also been shown that
such frequency-specific phase-coupling plays an important role in task
performance, in which task-related information is transmitted through
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phase-locking across spatially distributed cortical regions (Bola and
Sabel, 2015; Fries, 2015).

Magnetoencephalography (MEG) recordings have demonstrated that
large-scale networks activated in cognitive tasks involve different fre-
quency bands in their communications. For instance, the connectivity
between the left and the right motor regions, quantified by the correla-
tion of band-limited power, is maximized in the beta band (13-30 Hz),
but not significant at low frequencies (1-8 Hz) or high frequency (i.e.
>40 Hz) (Brookes et al., 2012a,b; Brookes et al., 2014; Brookes et al.,
2012a,b; Hipp et al., 2012). Moreover, certain frequency bands are
related to distinct cognitions. For example, electrophysiological studies
of working memory have shown that power and coherence in the beta
band decrease with increased memory load in the frontoparietal
network. However, the power in theta the band only increases in the
frontal regions, while the power in the alpha band exhibits a reduction
with increased task load in the parietal nodes (Brookes et al., 2012a,b;
Brookes et al., 2014). These findings imply that connectivity patterns at
distinct frequency bands may subserve different cognitive functions.

In addition to specificity in spectral features, functional networks
exhibit highly temporally variable neuronal dynamics on rapid time-
scales (Bola and Sabel, 2015; Kopell et al., 2014). In order to effectively
track such network dynamics, many studies have explored the organi-
zation of brain functional networks using MEG, since the temporal
richness of MEG can match the rapid timescales of the brain’s functional
connectivity (O’Neill et al., 2017; Scholvinck et al., 2013; Tewarie et al.,
2019b). For example, Vidaurre and colleagues have published multiple
papers using a set of methods based on the Hidden Markov Model,
showing that functional brain networks reorganize and coordinate
transiently on the timescale of milliseconds (Baker et al., 2014; Quinn
et al., 2018; Vidaurre et al., 2018; Vidaurre et al., 2017). O’Neill et al.
proposed an independent component analysis (ICA)-based method for
time-varying functional connectivity, demonstrating the temporal evo-
lution of dynamic networks at a specific frequency band on the timescale
of seconds during a task (O’Neill et al., 2017). Lachaux and colleagues
presented a practical method based on phase-locking for the direct
quantification of frequency-specific synchronization with time resolution
at the millisecond scale (J. P. Lachaux, Rodriguez, Martinerie and Varela,
1999; Varela et al., 2001). Also, the brain networks are recently under-
stood as a multi-scale network and can be characterized over temporal
scales with precision ranging from sub-millisecond to that of the entire
lifespan (Betzel and Bassett, 2017; Betzel et al., 2016; Khambhati et al.,
2019).

Considering the temporal non-stationarity and frequency specificity
of the functional connectivity, previously applied methods typically
required pre-specification of a frequency band and/or a time window
before connectivity calculation. Those methods need to filter the neu-
roimaging data into specific frequency bands and examine the temporal
dynamics of interactions for one specific frequency band by one (de
Pasquale et al., 2012; de Pasquale et al., 2016). For examples, Betti et al.
linked the dynamics of formation and dissolution of networks and of hub
networks during movie observation to the one occurring during resting
stage using a fixed frequency band (Betti et al., 2018; Betti et al., 2013).
O’Neill et al. provided an overview of the studies on the dynamics of
connectivity carried out with fixed frequency intervals but without
pre-specification of the time window (O’Neill et al., 2018; O’Neill et al.,
2015). However, the above-mentioned methods were reliant on a priori
selection of frequency bands, and few studies have attempted to explore
the formation and dissolution of the frequency-dependent dynamic brain
networks during task performance within a completely data-driven
approach.

In the current study, we undertake an analysis of the spectral features
and temporal evolution of dynamic connectivity during a task. Our
proposed framework is based on the measurement of the time-frequency
domain connectivity between pairs of separate brain regions predefined
through cortical parcellation. Weighted phase lag index (wPLI) is used as a
means of quantifying the connectivity since it is insensitive to signal
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leakage and similar bias effects (Hillebrand et al., 2012; Palva et al.,
2018; Vinck et al., 2011). After calculation of the wPLI for each time
point and frequency point, we construct a third-order tensor (a
three-dimensional data array) including frequency, time, and connec-
tivity (vectorized upper triangular parts of the connectivity matrix). The
three-dimensional data is then analyzed using tensor component analysis
(TCA), which is a multi-dimensional decomposition technique and is an
extension of matrix factorization (e.g., principal component analysis
(PCA) or ICA). TCA can extract separate components with
low-dimensional features (factors), each of which corresponds to a
functional connectivity pattern with rapidly temporal dynamics and
distinct spectral dynamics. It should be noted that unlike PCA or ICA, the
factors extracted by tensor decomposition do not require orthogonality or
independence. According to this property, tensor decomposition can
achieve a demixing of high-dimensional data and examine the interac-
tion across different modalities (Zhou and Cichocki, 2012; Zhou et al.,
2016). For example, in an EEG study, three tensor modes could corre-
spond to time, frequency, and channel (Mgrup et al., 2006). In fMRI
studies, the different modes could be voxel, time, and patient (Hunyadi
et al,, 2017). In neurophysiological measurements, they could span
neuron, time, and trial (Williams et al., 2018). Previous TCA-based
studies of brain connectivity mainly applied TCA to channel-level EEG
data to detect the change points of the dynamic network states (Liu et al.,
2014; Mahyari and Aviyente, 2014; Mahyari et al., 2016; Samdin et al.,
2016) and examine the spatial-temporal properties of the network
community (Al-sharoa, Al-khassaweneh, & Aviyente, 2018; Ozdemir
et al., 2017; Tang et al., 2019). Also, TCA was applied to EEG channel
level connectivity over time, frequency and subjects to explore the con-
nectivity patterns within the considered electrodes (Pester et al., 2015),
and to ongoing EEG data over temporal sliding windows, frequency, and
subjects to link musical features to brain networks (Zhu et al., 2019a,b).
Here distinct from this, we applied TCA to atlas-based MEG data over
network connectivity, time and frequency to provide a pipeline to track
the temporal evolution of frequency-dependent functional networks at
the millisecond scale during task performance. We performed tensor
decomposition to extract three interacted, low-dimensional descriptions
of time-frequency phase-coupling networks, which includes connectivity
factors reflecting functional network patterns, temporal factors reflecting
rapidly temporal evolution of the functional networks, and the spectral
factors reflecting spectral features of networks. The proposed pipeline is
completely data-driven and enables the characterization of the temporal,
spectral, and spatial features of the electrophysiological network con-
nectivity all at once. In other words, this allows us to identify which
involved frequency bands, where and when significant modulations in
connectivity occur.

2. Material and methods
2.1. Data description

We analyzed MEG data from the human connectome project (HCP;
www.humanconnectome.org), including a motor task and an N-back
working memory task (Larson-Prior et al., 2013). Sixty-two subjects
participated in the motor task and 82 subjects in the working memory
task. Most were right-handed as measured with the Edinburgh Handed-
ness Inventory, with a mean lateralization quotient of 65% and SD = 44%
(Oldfield, 1971). Data were recorded using a whole-head 248-channel
magnetometer system (MAGNES 3600 WH, 4D Neuroimaging, San
Diego, CA) with the participants in supine position. Data were continu-
ously recorded with a sampling rate of 2034.5 Hz and a bandwidth of
DC-400 Hz. Digitization of the participants’ head shape and of the lo-
cations of the fiducial coils was accomplished with a Polhemus 3Space
Fasttrak system. Participants performed a sequence of tasks, described in
detail in the reference manual provided by HCP. Just prior to the N-back
working memory task the participant underwent three runs of approxi-
mately 6 min of resting-state MEG recording.
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A
3000ms 1050ms 150ms 1050ms 150ms 1050ms 150ms
Working memory
task non-target non-target target
B
2500ms 2000ms 500ms 2000ms 500ms 2000ms 500ms

Fig. 1. Experiment task. A) Right hand movements in motor task paradigm. Block begins with a 3 s cue instructing the participant which limb to move in that trial. B)
Two-back condition in the working memory task. Two-back blocks were signaled by a presentation of “2-back” for 2500 ms. Participants indicated whether the

presented stimulus matched the stimulus two trials earlier.

During the motor task, participants were presented with visual cues
instructing the movement of either the right hand, left hand, right foot, or
left foot. Movements were paced with a visual cue, which was presented
in a blocked design. Each block started with an instruction screen, indi-
cating the limb (arm or leg) and the side to be involved in the current
block. A set of pacing stimuli were presented in sequence, each one
instructing the subject to make a brisk movement. The pacing stimulus
was composed of a small arrow in the center of the screen (see Fig. 1).
The interval between consecutive stimuli was fixed to 1200 ms. The
arrow stayed on the screen for 150 ms and the screen was black for the
remaining 1050 ms. There were 8 blocks of movement per motor
effector. 10 pacing stimuli were presented in sequence. This yielded in
total of 80 movements per motor effector. Here, for simplicity, we only
used data with right- and left-hand movements.

During the N-back working memory task, subjects were presented
with pictures of tools or faces. There were two memory load conditions:
0-back and 2-back tasks. 0-back task is a match-to-sample condition
during which a cue target image was presented at the beginning of a
block. A set of images were presented in a sequence, and each of them
was displayed for 2000 ms. At the end of this interval, a button press had
to be executed by participants with the index or middle finger of the right
hand as to whether this current image matched the target or not. For the
2-back condition block, participants were presented with a sequence of
images and had to respond whether each image matched the image two
positions earlier or not. The response had to take place within a 500-ms
period after stimulus presentation, during which a fixation cross was
presented on the center of the screen. Participants were presented with 8
blocks in the 2-back condition. A sequence of 10 images is presented in
each block. This yielded in total number of 80 trials.

2.2. Preprocessing and source reconstruction

We used the same criteria set in the HCP pipelines to remove bad
channels, segments and bad independent components.! Briefly, epochs
had been extracted from the continuous recording. Epochs containing
superconducting quantum interference device (SQUID) jumps, bad sen-
sors, or bad segments, defined as excessive signal amplitude changes >
~10712T, were excluded from further processing. Eye movement-related
signals and cardiac signals had been identified with ICA and projected
out of the data. For the motor task, trial duration was set from —1.2 to
1.2 s relative to the onset of the arrow that instructs subjects to execute
the movement. For the working memory task, trial duration was set from
—1.5to 2.5 s relative to the onset of the image that subjects had to match
or not with the target image. After bandpass filtering (1-48 Hz), the data
were down-sampled to 256 Hz. Following this preprocessing, the cortical

! https://www.humanconnectome.org/documentation/MEG/MEG1
_Release_Reference_Manual.pdf.

surface of the brain was reconstructed from an anatomical individual
MRI offered by HCP. The reconstructed cortical surface was decimated to
4098 evenly distributed vertices per hemisphere. The preprocessed data
epochs were used to compute the inverse model, which was estimated
using cortically constrained and depth-weighted (p = 0.8) L2 minimum-
norm estimate (WMNE) (Lin et al., 2006). The noise covariance matrix
was calculated from the empty-room recordings, separately for each
subject’s data provided by HCP. The cortical surface was then parcellated
into 68 anatomical regions based on the Desikan-Killiany Atlas (Desikan
et al., 2006). This atlas discretized the neocortex into 34 parcels (areas)
per hemisphere. For each parcel, we performed a principal component
analysis to extract spatially orthogonal components that describe the
activity, ordered by amount of variance explained. We selected the first
principal component as a representation of the parcel’s time course of
activity. Thus, for each trial, a source-level data matrix M was created
with dimension n, x ns;, where n, = 68 represented the number of
anatomical regions and n; represented the number of samples (n; = 615
for the motor task, ny = 1024 for the working memory task). The main
steps of the subsequent data processing pipeline are outlined in Fig. 2.

2.3. Spectral decomposition

To estimate the spectral densities of the parcellated time-series data,
continuous wavelet transform with Complex Morlet wavelets was per-
formed on source space data matrix M for a single trial. A total of 42
linearly spaced frequencies and full time points were estimated. The
wavelet contained three cycles at the lowest frequency (4 Hz); the
number of cycles increased up to 15 cycles at the highest frequency (45
Hz), and 42 frequency points from 4 Hz to 45 Hz were obtained. Thus, for
each trial, a third-order tensor was obtained with dimension n, x ns x ny,
where ny = 42 represented the number of frequency points.

2.4. Functional connectivity estimation

To estimate phase-coupling between all pairs of regions for each
frequency and time point, wPLI (Vinck et al., 2011) was computed; i.e.,
the sign of the phase difference between two signals is weighted by the
magnitude of the imaginary component of the cross-spectrum:

_ [ (lim(S1(, 085 (1)) Isign(im(S1(f, 0S5 (f,1))) )| _

PLI
e S [im (S, 085 (F,1)|

(€9)

where S} (f,t) and S(f,t) are wavelet-decomposed time-frequency rep-
resentations from regions 1 and region 2 respectively, from trial n and for
frequency point f and time point t. N is the number of trials. * represents
the complex conjugate, im() is the imaginary part of a complex value, and
|| represents an absolute value operation. For each subject, a third-order
tensor of connections P was created with dimension n. x ny x ns, where
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Fig. 2. Analysis pipeline. Data were preprocessed, divided into stimulus-locked epochs, and projected into the source-space using the weighted MNE algorithm.
Signals of 68 ROIs based on anatomical brain regions were transformed with a Complex Morlet wavelet. For each time-point and frequency-point, an adjacency matrix
containing wPLI estimates was then generated (vectorized using upper triangular parts). For each subject, a three-way tensor (with time by frequency by connection)
was obtained. These individual wPLI (average across trails) tensors were concatenated across subjects in temporal dimension. Nonnegative CANDECOMP/PARAFAC
(CP) decomposition was performed on the temporally concatenated tensor to extracted low-dimensional components including temporal factors, spectral factors, and

connectivity factors.

n. = 2278 denotes the number of pairs of regions (68*(68 — 1)/ 2).
These three-way arrays were then concatenated over time to generate a
new tensor X with dimension n. x n; x ng, where n; = ng* n, and n,
denotes the number of the participants (n, = 61 for the motor task and
n, = 83 for the working memory task).

2.5. Tensor decomposition

The most common method for dimensionality reduction and
component analysis of electrophysiological data has been based on
decomposition techniques such as PCA and ICA. However, these two-way
analysis techniques commonly applied on matrices may fail to find the
underlying structures in multi-dimensional data sets (Cong et al., 2012;
Williams et al., 2018). Here, we use the CANDECOMP/PARAFAC (CP)
model (Sidiropoulos et al., 2017), a direct extension of bilinear factor
models to multilinear data, to identify a set of low-dimensional compo-
nents characterizing variability along each of the modalities. A brief
description of the CP model follows.

Each element in the obtained tensor X € R'fxn‘x"f , Xcf; denotes the
connection (WPLI) between two regions at time point ¢t within frequency
bin f. Here, the indices c, t, and f each range from 1 to n, n;, and n,
respectively. It should be noted that all the elements are non-negative,
since wPLI takes values between 0 and 1. CP decomposition approxi-
mates the data as a sum of outer products of three vectors producing an
additional set of low-dimensional factors, which can be described as:

J
X~ ajeb;ec, 2
j=1

where operator o represents the outer product of vectors, and J is the
number of extracted components. @;,b;, and ¢; (n = 1,2, ---,J) are the

factor vectors. We can think of a; as the functional network pattern across
the whole-brain connections, and we can consider b; as spectral factors
across frequency. These connectivity factors and spectral factors consti-
tute a structure that is common across time. The third set of factors, c;,
can be considered as temporal factors, which characterizes the temporal
evolution of the frequency-specific functional connectivity patterns
identified by connection and spectral factors. Thus, TCA for wPLI data
can capture temporal dynamics of the functional connectivity on a
timescale of milliseconds with a specific spectral feature. Such frequency-
specific connectivity patterns may be modulated by a task across time
during task performance. In addition, another benefit of TCA is a
dimension reduction of the original high-dimensional data, reducing n, x
ng x ny data points to J(n +ns +ny) elements.

The non-negative CP model optimization is to solve the following
minimization problem:

2

1
min> ; (3)
F

J
X = ajebeg
=

where f represents the Frobenius norm. Matrix A = [a;, az,--,aj] is the
connectivity factor matrix, B = [b1, by, -+, bj] is spectral factor matrix,
and C = lc1, ¢c2,-,¢] is temporal factor matrix. Like many matrix
factorization methods, the CP model can only be fit by iterative optimi-
zation algorithms. Such procedures may converge in suboptimal local
minima, but in other applications, all estimations for many runs have
converged to similar reconstruction errors (Cong et al., 2012; Mack-
evicius et al., 2019; Williams et al., 2018). For example, Williams et al.
applied the TCA to neural data to extract low-dimensional neural dy-
namics across multiple timescales, where the majority of runs for opti-
mization successfully converged with high data fit value (Williams et al.,
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2018). In the current study, we apply the classic method of alternating
least-squares (ALS) to estimate the factor matrices (Cichocki et al., 2015;
Kolda and Bader, 2009). To solve the minimization problem in Equation
(3), the ALS algorithm fixes two of the factor matrices and optimizes over
the third one. This is a least-squares subproblem that is convex and has a
closed-form solution. For illustration, consider estimating the connec-
tivity factor matrices A, while fixing the spectral factor matrices B and
temporal factor matrices C. This yields in the following updating rule:

1 J
Aﬁmgminézxzajob,ocj €))
j=1

2
F
which can be estimated as a linear least-squares problem. We terminated
the CP decomposition process when the absolute difference value of data
fitting of the adjacent two iterations was less than very small positive
value such as 1e — 8, or the maximum number of iterations was more
than 1000. Here, TCA was performed on temporally concatenated data
across subjects. This means that the connectivity factor and the spectral
factor of the brain networks (components) are common to all subjects but
the temporal factor is subject-dependent. Each subject has their own
temporal courses, representing the time evolution of the frequency-
specific networks at each time points. The ALS algorithm is available in
several open-source toolboxes (Bader and Kolda, 2012; Vervliet et al.,
2016).

2.6. Selection of component number

In the application of tensor decomposition, a crucial issue is the
determination of the number of components to be extracted. Actually, the
choice of the number of components to extract is an inherent problem of
model order selection, which is usually for the linear transform model or
other dimensionality reduction methods (Cong et al., 2012, 2013; Mgrup
and Hansen, 2009). Although many different methods have been
developed in the past few years, there does not exist a perfect solution for
all conditions. Here, we used the DIFFIT method as a reference to inform
this choice. DIFFIT refers to the difference in data fitting, and is calcu-
lated based on model reconstruction error and the explained variance
(Timmerman and Kiers, 2000; Wang et al., 2018). The reconstruction
error of the CP model is defined as

J
X =D tobieg|

(5)
|1

ReErr(J) =

Reconstruction error provides a metric analogous to the fraction of
unexplained variance often used in PCA, since it is normalized to range
between 0 and 1. Let the number of components J € [1, 7], where 7 is
the empirically maximal number of underlying components. A fit is the
variance of raw data explained by a proposed model and can be obtained
as

J
DY SUAL AN

Fit(J) =1—ReErr(J) =1— ]
B

(6)

Unlike PCA, the optimization procedure of tensor decomposition may
have suboptimal solutions (local minima), and there is no guarantee that
optimization routines will find the best set of parameters for decompo-
sition. Thus, we run the optimization algorithm underlying the CP model
at each value of J 20 times from random initial conditions, and the

average data fitting Fit(J) is calculated across many runs. Then, the dif-
ference fit of the two adjacent fits is

DIF(J) =Fit(J) — Fit(J — 1). ()

Next, the ratio of the adjacent difference fits reads as
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DIF(J)

DIFFIT(J) = DI 1)

®
The model J with the largest DIFFIT value is considered as the
appropriate tensor factorization model for the raw data tensor.

2.7. Testing the task-modulation connectivity

The above analyses yielded a set of J brain networks (TCA compo-
nents) with distinct spectral features, temporal courses, and connectivity
patterns. Here, we sought to determine which extracted components
were significantly modulated by the tasks. It should be noted that our
procedure was based on previously theory, which has been well
described elsewhere (O’Neill et al., 2017; Winkler et al., 2014; Zhu et al.,
2019a,b). We first averaged the temporal factor matrix C (with a
dimension of nyn, x J) across subjects, yielding a new temporal matrix
C (with a dimension of ng x J ) containing J subject-averaged temporal
courses. After this, an empirical null distribution was constructed based
on phase randomization (Brookes et al., 2014).

We defined a “sham” matrix, Conser, Which was constructed in exactly
the same way as C, but prior to averaging over subjects, the onset of
individual temporal courses was randomly shuffled based on phase-
randomization. The phase-randomization was computed by taking the
Fourier transform, randomizing the phase angle, and then transforming
back. The properties of the derived time series of each individual subject
were exactly preserved in the spectral domain. We reasoned that if no
task induced response was expected, the randomly shuffled onset times
would be meaningless, and therefore the magnitudes of fluctuations in
Conset and € would match. However, if the individual temporal courses
contained time-locked responses in brain connectivity, which were
robust over subjects, then these would be preserved in C but diminished
in Copser. This procedure was repeated 5000 times to generate an
empirical null distribution for each extracted component.

A component was considered significant if, at any one time point in
the subject average, the corresponding column of C fluctuated such that
it fell outside a threshold defined by the null distribution (randomized
onset). The threshold for significance was defined at level P < 0.05. This
significant level was corrected based on Bonferroni correction for mul-
tiple comparisons across the multiple (J) components. In addition, a two-
tailed distribution was allowed since the magnitude of the average
temporal courses could be either greater than, or less than the null dis-
tribution. Thus, the threshold for significance was set at
Peorret < 0.05/(2 x J) = 0.025/J.

3. Results

In the following section, we show the flexibility of our framework in
the real MEG dataset. However, our proposed framework was also vali-
dated in simulation and compared with permutation test procedure
without TCA (see Supplementary material). These simulation results can
be found in the Appendix.

We firstly ran CP at each value of J—linearly increasing from 1 to 40
(/ = 40)—20 times with random initial conditions, which enabled us to
examine whether some runs converged to local minima with low data
fitting value (or high reconstruction error). Fig. 3 demonstrates the
averaged fit values (Fig. 3A), the difference of fit values (DIF) and the
DIFFIT (Fig. 3B). As can be seen that the variance (shaded areas of
Fig. 3A) of the fit values from the 20 times is very low, and reveals that all
runs at fixed component number J yield the same data fitting. For the
motor task, it can be seen that the DIF values become very close to 0 when
the component number J > 20 and a local maximum on DIFFIT at J = 20
emerges. This suggests the data fitting value starts to converge, which can
be also found from the data fitting curve. The data fitting curve also re-
veals that all runs at fixed J yield similar results, indicating that all local
minima in the optimization process are similar to each other and thus are
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Fig. 3. A) Fit value plotted against number of components. B) difference of fit values and the DIFFIT plotted against number of components. For the movement
experiments, we chose 20 components decomposed by the CP model. For the working memory task, 25 components were extracted since the delta fit was relatively
small. It should be noted that the results were robust when the number of components was set from 15 to 25.

presumably similar to the global minimum. Fig. 3B demonstrates that J =
25 may be the appropriate model for CP decomposition in the working
memory task since the DIF values are close to 0 after J = 25. Hereinafter,
we set J = 20 for the motor task and J = 25 for the working memory
task. Note that the DIFFIT method just gives a reference to select the
number of underlying components, and we discuss this further below.
Fig. 4 demonstrates the results of the proposed approach performed
on the movement data. While J = 20 rank-1 components were extracted,
here we presented only two brain network patterns that exhibited sig-
nificant task modulation. The other brain networks are shown in the
Supplementary material. In Fig. 4, the right side shows the results of the
left-hand movement data and the left side shows the results of the right-
hand movement data. Each row of Fig. 4 represents a component with
three factors. Fig. 4A demonstrates the connectivity factor representing
the brain network pattern, which is demonstrated in 3D visualization and
thresholded (top 5%) for clarity. Fig. 4B shows the temporal factor
reflecting the time evolution of this network, which is represented as the
associated averaged temporal factor of the individual in C (with a
dimension of ny x J ) and plotted by black line. The time line of the
event is marked by the vertical line. The gray shaded area indicates the
null distribution constructed by randomly shuffling the time onset
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(Conser), which is the 95th percentile threshold. Fig. 4C shows the spectral
factor reflecting the oscillatory feature of this network. A network shown
in Row I, representing primary somatosensory and motor regions, is
modulated significantly by the left-hand movement task (Fig. 4B). It is
also found in right-hand movement data depicted in Row IIL. It should be
noted that the results are slightly different for different sides of the hand
movements. The 3D visualization demonstrates that network connec-
tivity is mainly located in the left primary somatosensory cortex for right-
hand movement (Row I of Fig. 4A), and on the right primary somato-
sensory cortex for the left-hand movement (Row III of Fig. 4A). Fig. 4C in
Rows I and III show the spectral features of the sensorimotor network
modulated by the movement task. It can be clearly seen that the senso-
rimotor network is associated with frequency modes ranging from 15 to
30 Hz, corresponding to the classical beta band. Rows II and IV show
another visual network, modulated significantly by visual cues. The
spectral feature suggests that this visual network is related to the theta
and alpha bands. This spectra-specific visual network is derived from
both left- and right-hand movement tasks.

Fig. 5 demonstrates the results of our analysis pipeline applied to the
2-back working memory data. Obviously, the increased cognitive load
induced by 2-back working memory tasks elicits alterations in a large
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Fig. 4. Results of the hand movement experiments. The left side shows the results of the right hands’ movement, and the right side shows the results of the left hands’
movement. The separate columns show A) 3D representation of connectivity factors, thresholded (top 5%) for visualization. Each node indicates one brain region and
darker color of lines shows stronger connections. B) The temporal courses of the network patterns during finger movement task, averaged across subject (black line).
The gray shaded region represents the null distribution based on the hypothesis that the response is not time-locked to the stimulus. C). The spectral mode of the
network. Rows I and III show the beta oscillatory motor networks modulated significantly by movement task. Rows II and IV show the theta oscillatory visual networks

modulated significantly by the presentation of cross arrows.
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number of functional networks. We present 10 of the 25 brain networks
extracted that exhibited significant modulation by the 2-back working
memory task. Each row in the column indicates one component with
three factors, including connectivity networks represented as 3D visual-
ization (Fig. 5A), temporal evolution represented as averaged time
courses across subjects alongside a null distribution based on randomly
shuffled time onset (Fig. 5B), and spectral features (Fig. 5C).

Two primary visual networks shown in Rows II and III of Fig. 5 are
significantly modulated by the figure stimuli, which is unsurprising in
light of the visual nature of the task. Their connectivity magnitudes in-
crease by around 200 ms after both presentation and disappearance of
the figure stimuli, but the connectivity during presentation increases
more than during disappearance of the stimuli. Although these two
networks both involve the visual regions, their spectral features are
different. The spectral mode of network II peaks around 5 Hz, spanning
theta and low alpha bands, but the spectral mode of network III peaks
around 13 Hz across high alpha and low beta bands. Row IX, with
spectrum peaking at 10 Hz, demonstrates connections between the pri-
mary visual and parietal regions, showing an increase in connectivity
around 150 ms after the presentation of the figure stimuli. Row I shows a
right-lateralized connection between visual and temporal areas with a
spectral mode spanning the alpha band, which exhibits a significant
enhancement immediately during the appearance of the stimuli. Rows IV
to X show that transient functional networks with distinct spectral fea-
tures form in later task phases. Row IV shows an increase in connectivity
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between right frontal areas and temporal areas related to the theta band,
around, 300 ms after presentation of the stimuli. Row X indicates that a
connection between left frontal regions and right temporal regions
emerges by 300 ms after the stimuli, with a spectral feature across theta
and alpha bands. A high-alpha right-lateralized tempo-parietal network
appearing around 400 ms after the stimuli is shown in Row VII. Row VI
shows a bilateral temporal connectivity network with dominated alpha
rhythm, emerging at 600 ms after the stimuli. The network also captures
areas associated with semantic processing and is thus termed the semantic
network. Row VIII highlights a left-lateralized network that incorporates
regions of temporal, parietal, and frontal cortex. The regions implicated
are strongly associated with the production of language as well as shape
and pattern recognition. A beta sensorimotor network is also derived
during feedback. Row V demonstrates that a sensorimotor network
involved in beta rhythm emerges during the execution of the button
press. The connection exhibits strong enhancement in left motor areas,
since participants executed the button press with their right-hand. In
addition, the significant increases span a large range, from 1200 ms to
2000 ms, since the timing of the button press was different for different
subjects. This result is in line with the results of the motor task (Fig. 3). It
is worth noting that the brain areas involved in these networks incor-
porate the primary sensory cortices, association areas, and cognitive
networks that would be associated with semantic processing, face
recognition, and verbalization, and so these networks are plausible given
the task. These are further addressed in our discussion.
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Fig. 5. Results of 2-back working memory task. A) 3D network visualization. B) Average temporal course (black line) and null distribution based on randomized onset
times (shaded areas). C) Spectral mode of the network patterns. Row I: right lateralized connections between visual and temporal areas with a spectral mode spanning
alpha band. Rows II and III: primary visual networks with theta and high-alpha dominant spectrum. IV: connections between right frontal areas and temporal areas
related to theta band. V: Beta-specific motor network. VI: a bilateral temporal connectivity network with dominated alpha rhythm. VII: alpha-dependent right lat-
eralized temporo-parietal network. VIII: language-related network. IX: visual to parietal with alpha-dominant spectrum. X: connections between left frontal regions

and right temporal regions.
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4. Discussion

The present study introduced a tensor-based framework for deriving
large-scale phase-coupled network dynamics with distinct spectral fea-
tures. This pipeline allows characterization of transient reconfiguration
of electrophysiological brain networks at the timescale of milliseconds
when applied to MEG data. Previous methods typically required pre-
specification of a frequency band and/or a time window around the
stimuli onset before the connectivity calculation. Then, network dy-
namics were examined using matrix decomposition techniques, such as
ICA and PCA, in a single frequency band. Compared with ICA-based
approaches, the TCA-based framework is completely data-driven and
enables the characterization of the temporal, spectral, and spatial fea-
tures of the electrophysiological network connectivity all at once. Tensor
decomposition can provide dimension reduction for big data and extract
three interacted, low-dimensional patterns representing the high
dimensional time-frequency coupling data. Here, we calculated time-
frequency domain phase-coupled functional connectivity quantified by
wPLI and applied TCA to extract three interacted, low-dimensional de-
scriptions, including a connectivity factor reflecting spatial network
pattern, a temporal factor reflecting rapidly temporal evolution of the
functional networks, and a spectral factor reflecting frequency modes of
networks. By doing so, we identified the temporal dynamics of phase-
coupled networks with specific spectral modes, in a completely data-
driven way. This enabled us to identify where, when, and in which fre-
quency band significant modulations in connectivity occur. We validated
our proposed framework in a simulation (see Appendix) and a simple
movement task compared with the permutation test procedure without
TCA (see Supplementary material). Furthermore, we demonstrated the
utility of our pipeline applied to a complex cognitive task and showed
that frequency-specific functional networks transiently form and dissolve
to allow participants to complete a 2-back working memory task.

Tensor analysis methods have been well investigated from a theo-
retical perspective (Cichocki et al., 2015; Kolda and Bader, 2009; Sidir-
opoulos et al., 2017; Zhou et al., 2015), and applied to a variety of
neuroimaging data (Cong et al., 2015; Spyrou et al., 2019; Williams et al.,
2018; Zhu et al., 2019a,b). Some studies have applied tensor factoriza-
tion to sensor-level EEG data and fMRI data most typically to examine
differences between subjects in extracted multi-features (Cong et al.,
2012, 2013; Kanatsoulis et al., 2019), rather than across functional
connectivity. Some recent studies have examined the temporal evolution
of functional networks based on TCA across adjacency matrix, subjects,
and time, but did not investigate the spectral features, and only studied
channel-level EEG connectivity rather than source-reconstructed MEG
connectivity networks (Spyrou et al., 2019; Tang et al., 2019). Although
TCA was also applied to EEG channel level connectivity over time, fre-
quency and subjects to explore the connectivity patterns within the
considered electrodes (Pester et al., 2015), and to ongoing EEG data over
temporal sliding windows, frequency, and subjects to link musical fea-
tures to brain networks (Zhu et al., 2019a,b), we here applied TCA to
atlas-based source-level MEG data over network connectivity, time and
frequency to explore the formation and dissolution of
frequency-dependent functional networks during task performance. The
introduced MEG-TCA-network pipeline is able to reliably determine
spectral-specific functional networks since functional connectivity is
calculated for a set of atlas-based ROIs in anatomical space that covers
almost the entire brain, aiding the interpretation of MEG functional
network studies, as well as the comparison with other modalities (e.g.
fMRI). By establishing a novel link between tensor analysis and frequency
specific networks, we found that analysis of the extracted factors can
directly identify spatial patterns of functional connectivity with distinct
spectral modes as well as reveal temporal dynamics on the timescale of
milliseconds.

It should be noted that the temporal courses of the functional net-
works shown in Figs. 4 and 5 indicate a decrease and increase in con-
nectivity. That is, the peaks refer to the time points when two or more
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brain areas defining a network are most phase-synchronized. Just
because regions involved in networks are not synchronized at particular
time points does not mean that these regions are not engaged in the task.
This is an important point, as many areas involved in networks are likely
to be engaged continuously over the working memory task. In addition,
our pipeline has an excellent temporal resolution since we calculated the
connectivity at each time point. Fig. 4 demonstrates that a beta-
dependent network of brain connections involving primary somatosen-
sory and motor cortices, as well as supplementary motor regions, was
successfully identified based upon the finger movement task, which is in
agreement with the ICA-based study (O’Neill et al., 2017). This senso-
rimotor network was modulated significantly by the finger movement. In
contrast to the motor areas, which engaged in both movements due to
contralateral effects, network connectivity is centered on the right pri-
mary somatosensory cortex for left-hand movement (Row I of Fig. 4A),
and on the left primary somatosensory cortex for right-hand movement
(Row III of Fig. 4A). Another difference of the motor connectivity be-
tween right- and left-hand movement is the greater variability in time
course of the connectivity across subjects during left-hand movements,
since the non-dominant hand was used for the majority of participants.
Furthermore, a primary visual network with spectral modes across the
theta and alpha bands, modulated by visual cues, was also derived by our
pipeline in both left- and right-hand movement. The beta and alpha os-
cillations engaged in the visual networks were observed. Accumulating
evidence has shown that information is sampled periodically at low
frequencies (theta: 4-7 Hz and alpha: 8-12 Hz). Specifically, the alpha
and theta rhythms seem to coexist in the brain and support different
functions (Dugué and VanRullen, 2017; Dugué et al., 2017). If alpha has
been related to an ongoing, sensory rhythm, theta appears related to
attentional exploration of the visual space (Senoussi et al., 2019). This
theta-specific primary visual network was not obvious in the ICA-based
study (O’Neill et al., 2017), where the data were filtered into beta
bands (13-30 Hz) before calculating connectivity. Thus, the ICA-based
study failed to derive the visual network during the movement task
(O’Neill et al., 2017). We also validated our pipeline by comparing one of
the results from the hand movement (see Fig. S1), with the permutation
test procedure (Maris and Oostenveld, 2007). These results validate our
proposed pipeline by identifying the sensorimotor connectivity with
enhanced beta frequency modes, modulated by movements, and a
theta-specific visual network modulated significantly by visual cues.

In the working memory task, the formation of networks including
visual and sensorimotor regions with distinct spectral modes is consistent
with the presentation of visual stimuli and execution of the motor
response (O’Neill et al., 2017; Woodward et al., 2013; Yamashita et al.,
2015). A modulation in the theta band was also observed. Numerous
studies demonstrated that human theta can be engaged in the
working-memory task and the synchronized theta oscillations might be
coordinated by working-memory task (Raghavachari et al., 2006). Nodes
in the occipital lobe typically include the lateral fusiform gyrus which is
specialized for perception of faces (Dima et al., 2018; Elbich et al., 2019).
Networks of connectivity from the posterior superior temporal sulcus to
both the right occipital face area and the right fusiform face area, with
specific beta modes, emerged during the presentation of the face exam-
ples, which is in line with a recent study (Elbich et al., 2019). Other
frequency-specific networks encompass brain regions that are considered
to be important for the higher-order cognition needed for successful
completion of the working memory task. Enhanced alpha (8-14 Hz) ac-
tivity in broad brain areas, including the dorsolateral prefrontal cortex
(DLPFCQ), parietal and occipital regions, and superior temporal cortices, is
particularly evident in the majority of these networks. Many studies of
the neural oscillatory dynamics serving working memory processing
have implicated broad alpha rhythm activity in these brain areas as being
essential for task performance (Embury et al., 2019; Heinrichs-Graham
and Wilson, 2015). Particularly, the right DLPFC is recruited in network
IV connection with the right superior temporal sulcus, which is mainly
involved in theta frequency activity. Network VI also shows that the
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DLPFC is connecting bilaterally with the inferior superior temporal sulcus
in alpha frequency domain. It has been shown that the alpha oscillations
in the left and right DLPFC, widely known to play a cognitive and
attentional control function in working memory (Barbey et al., 2013;
O’Neill et al., 2017), synchronize temporally as a function of time during
decoding, maintenance, and retrieval phases (Heinrichs-Graham and
Wilson, 2015). Network VI incorporates bilateral inferior temporal gyri
regions considered important for semantic processing, which has been
referred to as a semantic network (O’Neill et al.,, 2017). This
alpha-specific network was also observed in a previous study, in which
the connectivity between the DLPFC and ventral visual regions varied
with cognitive load in a working memory task (Barbey et al., 2013;
O’Neill et al., 2017; Popov et al., 2018). Another cognitive network VIII
with spectral mode peaking in 10 Hz was also identified and termed the
language network by other researchers (O’Neill et al., 2017). According
to previous studies, working memory is more efficient for social infor-
mation than for nonsocial information (Thornton and Conway, 2013).
Participants could use the strategy of chunking or verbal labeling to
enhance working memory performance for social information. Indeed,
this left-lateralized network is anchored in the angular gyrus with ex-
tensions to the inferior frontal gyrus, inferior temporal gyrus, and a
number of nodes spanning the inferior to superior precentral gyrus.
These regions are consistent with previous accounts of semantic cogni-
tion (O’Neill et al., 2017). Overall, the transient frequency-specific net-
works elicited by 2-back working memory task are plausible given the
previous studies on working memory and sensory processes.

The proposed analysis framework can identify the spectral, temporal,
and spatial patterns of the electrophysiological networks that are tran-
sient form and dissolve during task performance. In doing so, several key
points should be considered while interpreting the results generated by
our pipeline. It should be noted that there is significant variability in the
temporal courses of frequency-specific connectivity across subjects since
temporal resolution is on the timescale of milliseconds; this variance is
exhibited in the average time courses across subjects. For example, the
low-level visual network is highly synchronized across subjects during
the presentation of the image example. Thus, the individual temporal
change of this visual network was similar and did not jitter in all subjects,
which was demonstrated by the fact that the peak of the average time
course would be far greater than the null distributions (gray shaded
areas) and the duration of the above null distributions would be very
short (thin curve; see Fig. 4 II). The time courses of motor network time-
locked button presses fluctuated across subjects; thus, the duration of the
above null distributions of the time courses would be long, showing the
time-locked temporal change jittered across subjects (see Fig. 4 III).
Although relatively poor between-subject reproducibility of MEG con-
nectivity measurements has been demonstrated (Colclough et al., 2016;
Wens et al.,, 2014), our framework still allows detection of the
quasi-time-locked temporal change in frequency-specific networks using
large cohorts during task performance. In addition, we perform tensor
factorization on the time-concatenated three-way tensor form, where the
underlying spatial connectivity patterns and the frequency mode are
common to all subjects while each subject has its own temporal courses.
Then the individual time courses were averaged across subjects to
identify components modulated by task. This less-relaxed assumption
could discard some components possibly involved in the task due to the
inter-subject differences. In other words, the task-modulated temporal
patterns of some components would be diminished due to inter-subject
variability of the task-induced response. For example, in the movement
task, some networks involving the somatomotor cortex with alpha
dominant spectrum (see. Fig. S5 IV, XI and XII) show modulations of
connectivity which seem to be related to the stimulus despite the tem-
poral courses below the threshold. Future work should therefore seek
other strategies to not only consider the inter-subject synchronization but
also the inter-subject variability. Actually, this assumption for MEG
connectivity study has also been introduced in previous studies (O’Neill
etal., 2017; Vidaurre et al., 2018). For example, O’Neill et al. applied ICA
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to the time-concatenated adjacency matrix calculated by the envelope
correlation to character temporal dynamics of networks (O’Neill et al.,
2017), where all subjects share common spatial connectivity patterns but
have different temporal courses. In fact, the connectivity within several
well-known distributed networks is stable even though their temporal
variability is significant across subjects. However, the temporal courses
of connectivity networks may be similar among subjects when per-
forming the same repeated task. An alternative method is to apply tensor
decomposition to a fourth-order tensor with time, frequency, connection,
and subject modes, to examine the specificity of subjects (Pester et al.,
2015). This will be one of our future study directions.

In addition, we here used the wPLI (phase-based method) as a means
of quantifying the connectivity. Since phase reflects the timing of
population-level activity, it can be conceptualized as a “functional
configuration” or a “functional state” (Cohen, 2014). However, the
phase-coupling-based methods might be non-sensitive to the induced
synchronization (e.g. beta event-related synchronization in
post-movement). The envelopes of band limited oscillations metrics have
been proved to detect fluctuations of connectivity during the well-known
post-movement beta rebound (Seedat et al., 2020; Tewarie et al., 2019a;
Vidaurre et al., 2016). Another limitation is that we only considered the
low-frequency coupling (1-48Hz). There is enough evidence that the
high frequency rhythms are important to understand transient coherent
functioning in the brain in other fields as epilepsy or vision (Jensen et al.,
2007; J.-P. Lachaux, Axmacher, Mormann, Halgren and Crone, 2012;
J.-P. Lachaux et al., 2005). However, we here only considered the
width-band signal since we assume no prior knowledge about which
frequency bands are dominant. This would result in failing to extract the
high-frequency coupling by tensor decomposition since the
low-frequency signal were dominate in the working memory task. It
would be better to examine the high-frequency coupling by tensor
decomposition separately for those researchers who are interested in the
high-frequency activity.

Another consideration in the application of tensor decomposition is
the selection of the number of components. Choosing the number of
components is not a limitation of our algorithm directly, but rather is a
challenging and fundamental problem for all tensor-based methodolo-
gies. In this study, we performed an empirical study using a range of
numbers of components for tensor models and applied the DIFFIT
method to determine the optimal number of components. In addition, we
also tried other numbers, showing that varying this parameter in our
current work made little difference to the overall results. It should also be
noted that the components were retained based on the fact that their
temporal dynamics were modulated significantly by the task. However, if
a network does not show significant modulation with the task, it does not
simply mean that this network is not genuinely representative of con-
nectivity. If the current pipeline is applied for a resting-state study, other
techniques should be considered to validate the extracted networks.

5. Conclusion

The characterization of electrophysiological brain networks based on
the phase synchronization of spatially separate brain regions, which are
transient and dynamic on the timescale of milliseconds, in order to
support specific cognitive tasks, is one of the important challenges in
cognitive neuroscience. In this paper, we propose a TCA-based pipeline to
describe temporal, spectral, and spatial signatures of such dynamic brain
networks using MEG data. We applied CP decomposition to a third-order
tensor formed by time-frequency domain phase-coupled connectivity, to
extract three interacted, low-dimensional descriptions of connectivity
data, including a connectivity factor reflecting spatial pattern, a temporal
factor reflecting rapidly temporal evolution of the functional networks,
and a spectral factor reflecting frequency modes of networks. The pro-
posed framework allows us to identify the temporal dynamics of phase-
coupled networks in specific spectral modes in a completely data-
driven way. We validated our pipeline in a simulation and a simple
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motor task, successfully identifying a beta-specific sensorimotor network
during finger movement and a theta-specific visual network modulated
by visual cues. We also used the proposed pipeline with a relatively
complex task (2-back working memory task) showing transient reconfi-
guration of electrophysiological brain networks on the timescale of
milliseconds. These findings demonstrate that the proposed framework
seems valuable in the characterization of electrophysiological brain
network connectivity.

Data and code availability
The data used in the manuscript are from the human connectome

project (HCP; www.humanconnectome.org). The analysis code will be
found in the first author’ website soon.
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Appendix. Validation by simulation

The validation of our proposed pipeline provided in this manuscript focuses on its application to real MEG dataset. However, our pipeline also has
been validated by simulation data. The performance of the wPLI as a measure of connectivity in source level has been addressed well in previous
publications (Palva et al., 2018), and we will not examine its performance repeatedly here. However, the ability of tensor factorization (CP decom-
position in this paper), applied to connectivity in a time-frequency domain, to explore the temporal, spectral and spatial features of functional networks
has not been tested. In the current study, we validated the ability of tensor factorization by performing CP decomposition on a third-order tensor formed
by a set of simulated brain networks.

Simulation methods

We firstly used the outer product of three predefined factors, temporal, spectral, and connection factors, to generate a simulated adjacency tensor
Ojim as the ground true connectivity networks. A noise (bandwidth:1-48 Hz) tensor A g, with same dimensions was added to form a synthetic adjacency
tensor Pgin. It can be represented by

J
— _ § : j j j
P.um = Q.\'im + N.&im = ag, ° b,-,'m ° cls[m + N.u'm
j=1

where @/, , b/, and ¢/, represented connectivity factor, spectral factor and temporal factor of the j-th component. Here, three spatially distinct con-
nectivity patterns were constructed based on a previous study (O’Neill et al., 2017). The spatial factors of connectivity, including visual, sensorimotor,
and fronto-parietal networks, were separately represented by an adjacency matrix (see Fig. Al). Their temporal and spectral signatures were
demonstrated in Fig. Al. The temporal factors were constructed by 4000 ms of Hanning windows. We set the amplitude to unit length 1, and the full
width half maximum to 200 ms, and their onsets were set to 150, 300, and 500 ms. The spectral factors were constructed by filtering white noise with
bandwidth centered at 5 Hz, 12 Hz, and 20 Hz. The outer product of temporal factors, spectral factors, and connectivity factors (vectorized adjacency
matrices) was performed to adjacency tensor Q. The noise tensor A sm was constructed by source reconstructing recorded empty room MEG data (also
provided by HCP) onto a simulated brain geometry. The wPLI was calculated based on the methods described in this paper. Noise tensor N g, effectively
represented connectivity networks of interest.

In order to test the ability of tensor analysis to extract interpretable descriptions including spectral, temporal, and spatial connectivity signatures of
brain networks under noise, we tested the performance in the presence of different noise-levels and defined a similarity merit to characterize how well a
single component with their three factors represented the simulated temporal, spectral, and spatial connectivity of a network. We also tested the impact
of selection of the frequency on the separation in simulation. The bandwidth of noise varies from 1 Hz to B (B € [30, 100 Hz]) with fixed SNR = 0 dB.

Temporal similarity: For each component, we calculated the correlation coefficients between its temporal factor and all the true time courses of the
three simulated networks. We thought of the maximum correlation coefficient as the best-matching simulated networks. The temporal similarity was
defined as the mean of maximum correlation across all the components.

Spectral similarity: Similar to temporal similarity, we calculated the correlation coefficients between the spectral factor of each component and all
the true spectrum of the three simulated networks. The max correlation coefficient was considered as the best matching simulated networks. The
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spectral similarity was defined as the mean of this maximum correlation across all the components.

Connected similarity: We also calculated the correlation coefficients between connect factor of each component and all the true adjacency matrices
of the three simulated networks. The max correlation coefficient was considered as the best-matching simulated networks. The connected similarity was
defined as the mean of this maximum correlation across all the components.

Simulation results

Fig. A1 demonstrates the temporal, spectral, connectivity factors of simulated and reconstructed networks. To test the performance of the CP
decomposition, we ran this analysis 20 times under different noise levels, between —35 dB and 25 dB in steps of 2 dB, and calculated the mean of
temporal, spectral and connected similarity across runs with varying the signal to noise ratio (SNR) of the simulated data. As expected, the figure of
similarity was high at high SNR, meaning that our simulated networks are reconstructed successfully (Fig. A2B). However, a sharp transition below a
minimum threshold SNR was observed, at which the similarity merits were very low and simulated networks were unrecoverable. As can be seen, a
different threshold value can be found for the temporal, spectral, connectivity factors and they were estimated successfully after —5 dB SNR. Fig. A2. C)
demonstrated the similarity merits against bandwidth. As can be seen, the widths of band have little effect on the separation.

Simulated networks Reconstructed networks

L FP
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1 100} 2000]
0.5
0.5 50 1000y
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. 0 2 3 4 10 20 30 0 1 2] 3 4 10 20 30
1I. Visual
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0.5 50 1000]
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0 2 3 4 10 20 30 0 1 2 3 4 10 20 30
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1 100]
1000 0.5
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Fig. Al1. Simulation results. Left: Simulated networks. Right: Reconstructed networks. Row I: Theta-oscillatory frontoparietal network forming in 1 s after onset. Row

II: Alpha-oscillatory visual network forming around 2 s after stimuli onset. Row III: Beta-oscillatory network forming around 3 s after stimuli onset.
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Fig. A2. A) Fit values as number of components. This plot unambiguously reveals J = 3 against the true number of components in the simulated data, in agreement
with the ground truth. B) Similarity merits against SNR. As the SNR increases, similarity of three factors becomes higher and higher. After around —5 dB SNR, they can
be reconstructed from data with a high accuracy. C) The similarity merits against bandwidth.
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Abstract— Recent studies show that the dynamics of
electrophysiological functional connectivity is attracting
more and more interest since it is considered as a bet-
ter representation of functional brain networks than static
network analysis. It is believed that the dynamic elec-
trophysiological brain networks with specific frequency
modes, transiently form and dissolve to support ongoing
cognitive function during continuous task performance.
Here, we propose a novel method based on tensor compo-
nent analysis (TCA), to characterize the spatial, temporal,
and spectral signatures of dynamic electrophysiologi-
cal brain networks in electroencephalography (EEG) data
recorded during free music-listening. A three-way tensor
containing time-frequency phase-coupling between pairs
of parcellated brain regions is constructed. Nonnegative
CANDECOMP/PARAFAC (CP) decompositionis then applied
to extract three interconnected, low-dimensional descrip-
tions of data including temporal, spectral, and spatial con-
nection factors. Musical features are also extracted from
stimuli using acoustic feature extraction. Correlation analy-
sis is then conducted between temporal courses of musical
features and TCA components to examine the modulation
of brain patterns. We derive several brain networks with
distinct spectral modes (described by TCA components)
significantly modulated by musical features, includ-
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ing higher-order cognitive, sensorimotor, and auditory
networks. The results demonstrate that brain networks
during music listening in EEG are well characterized by
TCA components, with spatial patterns of oscillatory phase-
synchronization in specific spectral modes. The proposed
method provides evidence for the time-frequency dynamics
of brain networks during free music listening through TCA,
which allows us to better understand the reorganization of
electrophysiological networks.

Index Terms— Tensor decomposition, frequency-specific
brain connectivity, freely listening to music, oscillatory
coherence, electroencephalography (EEG).

I. INTRODUCTION

HE electrophysiological network, characterized by neu-

ronal synchronization between spatially separate brain
regions, plays an important role in the human cogni-
tion [1], [2]. Such neuronal-synchronized networks are tran-
sient and dynamic, established on the specific frequency modes
in order to support ongoing cognitive operations [3]-[7]. The
characterization of the functional networks during resting state,
referred to as resting-state brain networks (RSNs), has been
widely studied during past few decades [8]-[10]. Recently,
growing interest has been directed to probing the reorgani-
zation of brain functional networks during naturalistic stim-
uli [11]-[13] and a strong relationship between the functional
networks during resting state and continuous task performance
has been demonstrated [14], [15]. For example, Alavash and
colleagues found that functional networks in challenging lis-
tening situations showed higher segregation of temporal audi-
tory, ventral attention, and frontal control regions, compared
to resting state [13]. Alluri et al. explored the neural correlates
of music features processing as it occurs in a realistic or
naturalistic environment [16], [17]. However, those functional
connectivity studies have been based on functional magnetic
resonance imaging (fMRI), which is indirect assessments of
brain activity. Actually, little is known about how oscillatory
basis is involved in the brain network activity during music lis-
tening. In this paper, we develop a tensor-based method which
allows us to characterize the spatial, temporal, and spectral
signatures of electrophysiological brain network connectivity
using electroencephalography (EEG) recorded during freely
listening to music.

Tensor component analysis (TCA), as a well-established
tool for signal processing and machine learning [18]-[20],

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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has shown to be powerful for neuroimaging data processing
and analysis in cognitive neuroscience [21]-[26]. A tensor
is a multi-dimensional representation of data or a multi-way
array. Each dimension in the tensor is called a way or mode.
For a matrix, a two-way array, matrix decomposition (e.g.,
independent component analysis, ICA) can be used for data
processing. Analogously, for a tensor, tensor decomposition
(or TCA) is able to be applied as well. TCA can reveal the
true underlying structure of multi-way data and explore the
interactions among multiple modes. For instance, TCA-based
methods have been successfully applied to EEG data which
is in general represented in time, frequency, and space [23].
In fMRI studies, the tensor modes could correspond to vox-
els, time, and patients [27]. In neurophysiological studies,
the different modes could span neurons, time, and trials [28].
TCA can unsupervised uncover the main features of the
neuroimaging data and extract low-dimensional descriptions
of the big data. Several TCA-based modes have been used
for decomposition and extraction of multi-way representation
of data. The CANDECOMP/PARAFAC (CP) [29] is one of
the fundamental models for tensor decomposition, which is
a generalization of singular value decomposition (SVD) to
higher-order tensor. TCA with CP model decomposes the
multi-dimensional data into sum of rank-1 tensors of lower
dimensions. Therefore, it can be applied to extract multi-
interconnected and low-dimensional descriptions of original
data. For example, performing TCA to the time-frequency
transformed multi-channel EEG tensor, three interacted low-
dimensional descriptions of data are extracted, including
temporal factor representing temporal evolution of the oscilla-
tory source, spectral factor representing oscillatory frequency,
and the spatial factor representing location of the oscillatory
source [30]. It should be noted that time-frequency representa-
tion of EEG data is usually nonnegative and CP decomposition
with nonnegative constraints is adopted. Previous TCA-based
studies of brain connectivity mainly focused on the aim of
detection of change points [31]-[34] and spatial-temporal
properties of the network community [35]-[37]. The spectral
mode of brain networks was not considered especially for
the fMRI neuroimaging data. Thus, these studies failed to
examine the underling spectral mode of oscillatory networks.
However, dynamics of large-scale networks during task perfor-
mance have been shown to fluctuate across different frequency
bands [6], [38]. For example, using magnetoencephalography
(MEG), self-peace motor task studies demonstrated that the
motor networks measured by the correlation of band-limited
power is dominant in beta band [38], [39]. Further, few
studies have attempted to explore spectral patterns of the brain
functional connectivity during continuous task performance.
In this paper, we examined the spatio-temporal-spectral
modes of covariation among separate regions in the listening
brain. We recorded the EEG data during freely listening to
music. Source-level data was obtained by source localiza-
tion based on minimum-norm estimate. We then computed
the time-frequency domain connectivity between all pairs of
separate brain regions predefined though cortical parcella-
tion, based on a sliding window technique. We used the
weighted phase lag index (wPLI) as a metric to quantify

the brain connectivity since it is insensitive to signal leakage
and similar bias effects [40], [41]. We were able to obtain
an adjacency matrix for each time window and frequency
point. We reshaped the upper triangular parts of adjacency
matrix into a vector. We then constructed a three-way tensor
containing time, frequency, and connectivity modes for each
subject. We performed CP decomposition on the temporal-
concatenated adjacency tensor for multi-subjects. It should
be noted that it is distinct from our previous study [5],
where CP decomposition was applied to time-frequency rep-
resentations of source-level EEG data. In the present study,
we extracted low-dimensional, spatio-temporal-spectral modes
of covariation including connectivity factor reflecting network
community, temporal factors reflecting temporal evolution of
functional networks and the spectral factors reflecting spectral
features of networks. Time series of five long-term acoustic
feature were extracted from the audio stimuli by music infor-
mation retrieval techniques used in previous studies [17], [42].
Finally, we analyzed the correlation between temporal courses
and the musical feature time series to identify frequency-
specific brain networks modulated by musical features.

[I. MATERIAL AND METHODS
A. Data Description

We used EEG data of 14 right-hand adults aged
20 to 46 years old. None of them reported hearing loss or his-
tory of neurological disease. No participants had musical
expertise. This study was approved by the local ethics commit-
tee. During the experiment, participants were presented with
a music played through audio headphones. This music was a
512 s long musical clips of modern tango, which had suitable
duration for the experimental setting due to its high range
of fluctuation in several musical features [17]. EEG data were
recorded at a sampling rate of 2048 Hz with BioSemi electrode
caps of 64-channels while participants were freely listening to
musical clip.

Here, we examined five acoustic features including tonal
and rhythmic features. They were extracted by applying a
frame-by-frame analysis technique [17], [42]. The length of
each frame was set as 3 seconds and the overlap between
adjacent frames was set as 2 seconds. Thus, one temporal
course with 510 samples was created for each musical feature
with a sampling rate of 1 Hz. The five acoustic features consist
of two tonal musical feature, Mode and Key Clarity, and three
rhythmic features, including Fluctuation Centroid, Fluctuation
Entropy and Pulse Clarity. Mode denotes the strength of
major or minor mode. Key Clarity represents the measure
of the tonal clarity. Fluctuation Centroid is defined as the
geometric mean of the fluctuation spectrum, indicating the
global repartition of rhythm periodicities within the range
of 0-10Hz [17]. Fluctuation entropy is the Shannon entropy of
the fluctuation spectrum, representing the global repartition
of rhythm periodicities. Pulse Clarity naturally estimates the
clarity of the pulse.

B. Preprocessing and Source Reconstruction

We re-referenced EEG data using common average elec-
trodes. We visually inspected for rejecting artifacts and bad
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Fig. 1. Analysis pipeline. EEG data were recorded during freely listening to music. Source-reconstructed data were divided into 68 ROIs based on
anatomical brain regions. Each windowed signal was transformed with a Morlet wavelet and wPLI was calculated between all pairs of ROls. For each
time window and frequency-point, an adjacent matrix was thus obtained. Then a three-way tensor was formed including spectral mode, temporal
mode, and spatial connectivity mode (vectorized using upper triangular parts of an adjacent matrix). Nonnegative CP decomposition was applied
to the temporally concatenated tensor across subjects. On the other hand, musical features were extracted using acoustic feature extraction. The

temporal courses of decomposed components and musical feature time series were analyzed to examine the modulated brain networks.

channels were interpolated with mean value of their spherical
adjacent channels. A 50 Hz notch filter was applied to remove
powerline interference. High-pass and low-pass filters with
2 Hz and 35 Hz cutoff were then used since our previous
investigation of the frequency range uncovered that no useful
information was observed in higher frequencies [12], [42].
The data were finally down-sampled to 256 Hz. Independent
component analysis (ICA) was performed on individual EEG
data to remove EOG (e.g. eye blinks) [43]. A schematic of the
subsequent data processing is demonstrated in Fig. 1. Follow-
ing data preprocessing, the forward model and inverse model
were computed using a MATLAB toolbox Brainstorm [44].
The symmetric boundary element method (BEM) was used
to calculate the forward model with a default MNI MRI
template (Colin 27). To solve the inverse model, weighted
minimum-norm estimate (WMNE) [45] was applied, which
is well-suited for estimation for brain connectivity since it
takes the volume conduction into consideration and reduces
single leakage [3]. The source orientations were constrained
to be normal to the brain cortical surface when calculating
the inverse problem. Then, the cortical surface was parcellated
into 68 anatomical regions based on the Desikan-Killiany Atlas
(DKA) [46]. In order to obtain a representative time series for
every region, the center of mass of each region was defined as
seed voxel and used as a single representative location. Thus,
for each subject, a source-level data matrix P was created with
dimension n, xng, where n, = 68 represents the number of
anatomical regions and ng represents the number of samples.

C. Dynamic Functional Connectivity Estimation
We attempt to examine the time-frequency dynamics of
brain functional connectivity. This means that we require

estimating connectivity between all pairs of DKA regions,
as a function of time and frequency using a sliding-window
technique [47], [48]. Firstly, source space data matrix P was
segmented by overlapping time window. A single window data
is denoted as P, with dimensions n, X ft. Here, w represents
window number, 7 denotes the window length in seconds and
f is sampling frequency. Hamming-window with 7 = 3s
and 2 s overlap of adjacent windows were set, resulting in a
sampling rate of 1 Hz in temporal dimension. This sampling
rate was in line with musical feature time series.

To calculate phase-coupling between all pairs of regions
in frequency domain, spectral densities should be estimated.
We applied continuous wavelet transform with Morlet wavelets
to the segmented data P,. The Morlet wavelet contained
3 cycles at the lowest frequency (2 Hz) and the number of
cycles was increasing up to 12 cycles at the highest frequency
(35 Hz). This resulted in 42 linearly spaced frequency points.
A four-way tensor was thus obtained with dimensions n, x
Nm X ny X ny,, where n,, = 512 denotes the number of
windows, ny = 42 is the number of frequency point and
n, = ft is the number of samples in a single window.

Weighted phase lag index (WPLI) is defined as the sign
of the phase difference between two signals weighted by
the magnitude of the imaginary component of the cross-
spectrum [41]. It is computed as

| S im (SP(f 1) SP*(f 1) |
ST Lim (SP (f,0) S (£0) |

where S’ (f,t) and S5 (f,t) are wavelet-decomposed time-
frequency representations from DKA region 1 and region
2 respectively, and segmentation w. * means the complex

wPLIfy) =
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conjugate, im( ) represents the imaginary part of a complex
value, | | is an absolute value operation. Note that wPLI here
descripts the degree of phase synchronization between regions
in a period of time (z = 3 ). After calculation of wPLI, for
each subject, a three-way tensor containing connections Q was
generated with dimensions n. x n,, x n s, where n, = 2278 is
the number of pairs of regions (68 x (68 — 1)/2). Finally, these
three-way tensors @ were temporally concatenated across
subjects, resulting in a group-level tensor X with dimensions
ne X nynp X ny, where ny, is the number of subjects.

D. Learning Underlying Brain Networks via
Tensor Decomposition

CP model, as a fundamental model for TCA, decomposes
a tensor into multiple components through a high-order sin-
gular value decomposition. It has found many applications in
several fields, especially for signal processing and machine
learning [18], [19]. Given a three-way tensor XGRZ“‘X”'XW
from constructed tensor containing connectivity, a rank-R
nonnegative CP mode factorizes X' into R components, each
of which contains a rank-1 tensor produced by the outer-
product of 3 column vectors. It is generally solved through
the following minimization problem with Frobenius norm of
the error:

2
in X iA ®B, ®C (2)
Ar,nI;flC ) r r r s
r=1 F
where A = [01,02,"‘ ’aR]» B = [bl,bz”" 9bR]7 and C =
[c1,¢2, - -+, cr] are called loading matrices or factor matrices.

Here, those loading matrices represent connectivity factor
matrix, spectral factor matrix, and temporal factor matrix
respectively. || ||F represents Frobenius norm. ® means
Kruskal operator. The estimated loading matrices with Kruskal
operator form can be written as the sum of R rank-1 tensors
with outer-product of column vectors form:

R R
> A ®B,®C,=> aroboc, 3)
r=1 r=1

where, a,, b,,and ¢, character the spatio-temporal-spectral
property of underling brain pattern. a, can be considered as
spatial topology of brain network pattern and b, can be thought
of as spectral mode of brain network pattern across oscillatory
frequency. These spatial topology factors and spectral factors
form structure that is common across time, which can be
termed as frequency-specific brain network connectivity. The
last set of factors ¢, represent temporal factors of the underling
brain pattern, which describes the temporal dynamic of such
frequency-specific brain network connectivity. Since values of
wPLI are nonnegative, we add a nonnegative constraint to
Eq. 2),a, >0,b, >0,¢,> 0.

There are many optimization algorithms for CP decom-
position with nonnegative constraint, such as multiplicative
updating (MU) method, alternating least squares (ALS) and
hierarchical alternating least squares (HALS) [49]. Here,
we apply ALS due to its good performance and fast speed
on convergence. The ALS algorithm applies a gradient descent

method to solve the minimization problem in Eq (2) iteratively.
At each iteration, one factor matrix is updated while other two
matrices are fixed. For brief illustration, consider estimating
spatial topology matrix A, fixing spectral factor matrix B, and
temporal matrix C, which resulting in the following update
rule:

2

R
X-Daroboc 4)

1
A < argmin —
A 2 r=1

F

It can be estimated as a linear least-squares problem and
has a closed-form solution. The solution of CP model using
ALS algorithm is available in many open source tool-
boxes [50], [51].

E. Selection of Component Number

All TCA-based method for learning hidden data struc-
tures require determining the number of components either
manually or via criteria such as DIFFIT method [52]
and CORCONDIA method [53]. Indeed, DIFFIT and
CORCONDIA measure the change of the data fitting (i.e.
explained variance of the original data) and the core tensor of
the decomposition among a number of models, respectively.
It should be noted that the number of components R can be
chose with a larger number than the minimization of each
model size, which is not restricted by the size in each mode
since the rank of tensor can be even larger than the max of each
model size [29]. Here for simplicity, we use DIFFIT method to
choose the number of components. DIFFIT, the difference in
data fitting, is computed based on model reconstruction error
and the explained variance of data [52], [54]. Let component
number R € [1,R], where R is the empirically maximal
number of latent components. The data fit can be obtained as

R

HX— > ajobjoc;
. =1 F
Fit(R)=1- L . Q)

X1 7
Unlike PCA, the estimation of TCA may have local minima
(suboptimal solution), and not guarantee that optimization rou-
tines will converge to the global optimal solution. Thus, we run
ALS optimization procedure at each component number R
20 times from random initial conditions. We then average data
fits across many runs, resulting in averaged data fit Fit(J).

The change fit of two adjacent data fit is

DIF (R) = Fit(R) — Fit (R — 1). (6)
Next, the ratio of the adjacent difference fits is defined as
DIF (R)
DIFFIT(R) = —————. (7N
DIF (R+1)

Generally, the candidate model R with largest DIFFIT value is
thought of as the appropriate model order of TCA for original
tensor.

F. Modulation of Temporal Evolution by Musical Features

How does music modulate frequency-specific brain net-
works during real-world? We address this question for each



ZHU et al.: DERIVING ELECTROPHYSIOLOGICAL BRAIN NETWORK CONNECTIVITY

413

Simulated
A. Temporal B. Spectral C. Connectivity

1 1
| ;
05 0.5
o roebsmpond
10 20 30 L

Q 0
0

4
0.5 05

ny LR -"»'

0 N 0 eta A

0 50 100 0 10 20 30 40

[T 1 T
05 05 ;
0 0

0 50 100 Q 10 20 30 40
Time/s Frequency / Hz

o
@
3
2
3

Fig. 2.

Reconstructed

A. Temporal
4000, 08

B. Spectral C. Connectivity

04
2000
02

o 50 100 a 10 20 20 40

8000, 06

04
0.2
]

6000, 06

4000 04

2000] 0.2

¢ 50 100 0 10 20 30 40
Time /s Frequency / Hz

Results for simulation. Left: the temporal, spectral, and spatial connectivity modes of three synthetic brain network patterns. Right:

corresponding spectral and spatial connectivity modes of reconstructed brain patterns.

musical feature, temporal courses of brain networks (compo-
nent) and subject. We aim to undertake a correlation analysis
between temporal profile and musical time series, through
evaluating the statistical significance of correlation based
on a surrogate permutation procedure [55]. We obtained R
TCA components with three factors, charactering the tempo-
ral evolution, spectral mode, and spatial topology of brain
networks. The temporal factor matrix C (with dimensions
Nphp X ﬁ) was firstly reshaped into a three-way tensor C
(with dimensions n, xn, x ﬁ), which includes individual
temporal course for each component. For each component
and each subject, we computed the correlation coefficient
between each musical feature time series and temporal course
as the modulation score. We then determined which com-
ponent was significantly modulated by testing whether its
modulation score was significantly different from the scores of
surrogate data. The surrogate data were generated by a phase-
randomization procedure [56], which rotated the intrinsic
phase and preserved the properties of the temporal course
in the spectral domain. We repeated the phase-randomization
procedure 5000 times for each component. We calculated the
correlation coefficient between musical feature time series and
phase-randomized temporal courses to obtain a distribution of
surrogate modulation scores. The 95th percentile (pcorrect =
0.05) of surrogate modulation scores was selected as the
threshold (control modulation scores for comparation) for
each subject. Finally, for each component, we performed two-
tailed t-tests for modulation score of each musical feature
to determine which component (brain network pattern) was
modulated significantly differently (at pcorrec: = 0.05 level)
from the defined thresholds.

IIl. RESULTS
A. Simulation Results

We firstly validated the proposed method using simulation
data, which proved instructive to examine the performance
of the methodology. The performance of wPLI, as a measure

to examine functional connectivity in source space, has been
validated well in previous study [40]. Thus, we here will not
examine the performance of wPLI repeatedly. We only tested
the ability of TCA, applied to time-frequency connectivity
data, to character the temporal, spectral, and spatial changes in
electrophysiological brain network over time scales of minutes.

We constructed an adjacency tensor Sy, using outer
product of temporal, spectral, and spatial topology fac-
tors of predefined true sources. The synthetic adjacency
tensor was generated by M, = Ssim + Niim =

R
r r r . . 1 3
le a,, oby och. + N sim, where Ny, is a noise tensor

(Jv_ith dimensions same as Sy;;,,. Three distinct brain network
patterns were predefined based on a previous work (R = 3),
which consists of visual, sensorimotor, and fronto-parietal
networks with distinct spectral modes [39]. Their temporal,
spectral, and spatial topology profiles were shown in Fig. 2.
Temporal factor matrix was constructed with triangle, square,
and sine waves and spectral factor was composed of peaks
at 5 Hz, 12 Hz and 25 Hz. We here demonstrated the results
under the signal to noise ratio (SNR) of 10dB. As can be seen,
the three underling true brain patterns with distinct temporal-
spectral-spatial modes were successfully extracted using TCA.

B. Results From Music-Listening EEG Data

Figs. 3 and 4 demonstrate the identified brain network pat-
terns (TCA components) during music listening: their spectral
and spatial topology (connectivity) profiles, as well as their
modulation by five musical features. The modulation score was
averaged across subjects. Here, 25 components were extracted
by CP decomposition according to DIFFIT method (See
APPENDIX), and we presented 9 components that shown sig-
nificant musical feature modulation. We observed two bilateral
frontal functional networks, referred to as anterior higher-order
cognitive brain networks in accordance with previous litera-
ture, but with distinct spectral modes (Rows I and II of Fig. 3).
One of them is dominated by low-frequency oscillations



414 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2020

A. Modulation score B. Spectral Profile

C. Connectivity Profile

I o015 0.4 Fronta[ Frontal
*
5 0.1 3
T 2
5 E_O_z Par Par
80.05 < A
0 0 . e
g 1o 20 30 eft Vis Right
II 0.15 0.3 ; Frontal
*
0.1 0.2
0.05 ﬁ i ﬂ 0.1 1
0 ﬁ . 0
0 10 20 30 Left Ve Right
III 0.15 0.6 Frontal . 4 5 Y
kv ', :‘{i .!. ;. -.':.f'
0.1 * 04 / boa SRR
Pardsd ‘g 4
0.05 ﬁ i ﬁ 02 i "
T2 g
0 0 g
0 10 20 30 Left Right .
IVois 0.2 Frontal  _« - ' Hie
C q ., A '.-‘:
W i (s
0.1 * k
0.1 % =
0.05 i ﬁ ﬂ i G
0 0
0 o 20 30 eft Right
V 0.15 0.3 Frontal Frontal
* C
0.1 0.2 !
Par ¢ ;
0.05 ﬁ 0.1 e
Q X i 0 LR ,:" %
NS > 0 10 20 30 _ 5 ai
[ S A e O ;
QS Q\& @ @06 Q&O Frequency / Hz Left Vis Right

Fig. 3.

Results for music-listening data. A. The modulation scores for each musical feature are computed from temporal course and averaged

across subjects. Error bars represent standard errors of mean. An asterisk indicates that the component is modulated significantly differently from
surrogate data. B. The spectral profiles are obtained from the spectral factor matrix. C. The circular phase-coupling plots and the 3D visualization of
the connectivity profiles. Each node/dot represents one brain region. I. Anterior higher-order cognitive network with dominant delta/theta frequencies.
1. Beta-specific higher-order cognitive network. Il &IV. Language-related network with distinct spectral modes. V. Beta-specific motor network.

(Delta and Theta rhythms, 3-8 Hz) and another is centered
at Beta rhythm (20-30 Hz). The regions involved by the two
anterior higher-order cognitive networks are part of the default
mode network (DMN), which here contains temporal poles,
the ventromedial prefrontal cortex and posterior cingulate cor-
tex. They are individually modulated by Fluctuation Centroid.
Row III of Fig. 3 shows a 10 Hz unilateral functional networks,
which mainly involves Broca’s arears and temporal poles that
are often associated with semantic integration. This brain pat-
tern is significantly modulated by Fluctuation Entropy. Row IV
of Fig. 3 shows a strong connectivity between temporal lobe
and the frontal regions with a Beta-specific spectrum, which

is significantly modulated by Pulse Clarity. We also found
a Beta-specific sensorimotor component (Row V of Fig. 3),
which involves regions including motor areas and is modulated
by Fluctuation Entropy.

Fig. 4 demonstrates several brain connectivity networks
mainly associated with auditory regions. The neural oscil-
lations involved are dominated by Beta rhythm. Row I of
Fig. 4 shows a bilateral temporal connectivity networks but
no connections between left and right. The Beta rhythm was
involved in this connectivity and it was modulated by Pulse
Clarity. Rows II and III show strong connections between left
temporal regions and right temporal regions with high-Beta
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Fig. 4. Auditory-involved networks. I. Left and right temporal connectivity networks with dominant coherence in Beta range. Il &lll. Left to right

temporal arears connections. IV. Alpha-specific right temporal network.

and low-Beta spectral modes. The temporal course of brain
pattern in Row II is modulated by Fluctuation Centroid, as
well as in Row III is modulated by both Fluctuation Centroid
and Fluctuation Entropy. Row IV demonstrates connections
between right temporal regions and left parietal regions. Its
neural oscillations are dominated by Alpha rhythm (Peaks at
10 Hz) and its temporal course is significantly correlated with
Fluctuation Centroid and Pulse Clarity.

IV. DISCUSSION

In this paper, we introduced a TCA-based approach applied
to EEG data, which allows us to characterize the time-
frequency dynamics of electrophysiology networks during
naturalistic music stimuli. We constructed a three-way tensor
containing temporal evolution of frequency-specific functional
connectivity in source space and used CP decomposition to
extract the low-dimensional descriptions of brain networks.
Using the proposed method, we extracted large-scale brain
networks during freely listening to music, which was described
by TCA components. Such TCA component, we refer to as
a brain pattern, was pictured with a distinct spatially and
spectrally defined pattern of network activity across the set
of predefined-atlas regions spanning the whole brain. These

patterns of frequency-specific phase-coupling were observed
to be temporally modulated by musical feature time series
and corresponded to plausible functional systems, including
auditory, motor, and higher-order cognitive networks. As far as
the authors are aware, this is the first complete formulation of
an TCA-based approach for the analysis of electrophysiology
network dynamics using ongoing EEG in source space during
naturalistic and continuous music listening.

The two higher-order cognitive brain pattern (or networks)
involved a subdivision of the DMN regions. These subdivi-
sions had distinguishing features in different frequency bands,
with one exhibiting high coherence in the Delta/Theta range
(3-8 Hz) (Row I of Fig. 3) and the other showing a high
coherence in the Beta range (20-30 Hz) (Row II of Fig. 3).
The involved regions were composed of temporal poles,
the ventromedial prefrontal cortex, and posterior cingulate
cortex. Temporal poles are well believed to be related to
semantic integration [6], [S7] and the ventromedial prefrontal
cortex is typically specialized for emotion regulation [58],
which shows strong connection with the posterior cingulate
cortex, a key region of the DMN [59]. Thus, the forming of
these connectivity patterns is plausible to understand semantics
expressed by music and induce related emotion during music
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listening. For the neural oscillations, previous studies reported
that cortical rhythm activity in the Beta range is related to
behavioral performance during music listening and associated
with predicting the upcoming note events [12], [60], which
confirms our results that the frontal high-order networks with
a high coherence in the Beta range emerged during music
listening. In addition, the Delta-specific high-order cognitive
network (Row I of Fig. 3) was also consistent with the
previous studies, which showed that oscillations in the Delta
played an important role in predicting the occurrence of
auditory targets [61]. Rows III and IV of Fig. 3 demonstrated
another two cognitive networks termed ‘language network’,
one of which was specific to Fluctuation Entropy with a
high coherence in Alpha band and another of which was
modulated significantly by Pulse Clarity with a high coherence
in Beta band. Previous studies revealed that brain functional
networks engaged in music processing has strict similarities
with that for language processing [62], [63]. Thus, the nodes
of the language network including Broca’s arears and the
superior temporal sulcus, may be implicated during contin-
uously listening to music. Recent spectral analysis techniques
also demonstrated frequency-specific neural activity during
processing language, where semantic and syntactic unification
involves the alpha and beta bands by stronger recruitment
of regions relevant for unification as indicated by the event-
related desynchronization [64]. This study thus supports our
findings that language network with strong coupling in alpha
and beta bands emerged. For the motor networks (row V
of fig. 4), it is believed that perception and execution of
actions are strongly coupled in the brain as a result of learning
a sensorimotor task, which facilitates not only predicting
the action of others but also interacting with them [16].
During music listening, a tight coupling emerges between
the perception and production of sequential information in
hierarchical organization [16], [65]. Brain regions associated
with motor networks may be involved due to the imitation
and synchronization during musical activities (e.g. ensemble
playing or singing). These networks involved in auditory areas
(Fig. 4) showed beta-specific modes, which play an important
function in music perception in agreement with previous
studies [12], [17], [60].

TCA and other tensor analysis methods have been exten-
sively examined from a theoretical perspective [29] and have
been found quite many applications for the multi-way neu-
roimaging data in cognitive research [22], [28], [66]. The
majority of studies have applied tensor decomposition to EEG
and fMRI data, most typically to examine differences over
subjects or time-frequency presentations of signals [23], [30],
[67]. However, we do not find many applications regarding
the characterization of temporal and spectral evolution of
coupling between brain regions. Such coupling, generally
termed functional connectivity, has been demonstrated tem-
poral non-stationarity, spatial inhomogeneities, and spectral
structure [38], [68]. It is natural to take into account the mea-
sure of time-frequency coupling between all pairs of regions
based on wavelet transform, yielding a big data in tensor
form with three modes corresponding to temporal course,
spectrum, and spatial connectivity topology. TCA or tensor
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Fig. 5. The Fit, DIF, and DIFFIT curves in function of component R.

decomposition, as a simple extension of PCA, enables
to process such high-dimensional data and extract low-
dimensional components describing the interactions among
modes. One of the key parameters for all TCA-based methods
is the determination of component number to be modeled,
which is less well prescribed and not a limitation of the pro-
posed approach directly. In this paper, we used DIFFIT method
to select the number of components. Note that DIFFIT pro-
vides a reference and instruction and is not able to accurately
estimate the underlying true number of tensor components.
We thus tried to vary this parameter (e.g., R = from20 t030)
in the current study and also observed the same networks
significantly modulated by musical features as R = 25.

In addition to parameter selection, another common con-
sideration is signal leakage through ill-posed inverse problem
causing spurious correlations between signals. Here, we used
wMNE algorithm, which is considered as an optimal source
localization method for functional connectivity analysis [3].
Additionally, wPLI was applied to measure the phase coupling
in time-frequency domain since it is insensitive to signal
leakage and similar bias effects [4]. Yet, it should be noted that
those techniques can only reduce the signal leakage problem,
not overcome it completely.

Another issue is that we have only used one piece of natural-
istic music stimuli to try to formulate an approach for analysis
of functional connectivity dynamics during real-world. This
work can be thought of as an exploratory study of neural
basis of brain network during naturalistic task performance.
Future work should adopt more musical clips and examine
the repeatability of results. It is also possible to study the
differences in brain network connectivity between resting state
and music-listening.

V. CONCLUSION

In this paper, we introduced a data-driven approach to
characterize the spatial, temporal, and spectral signatures of
electrophysiological brain networks at source level across
subjects during music listening. Previous studies have shown
that brain connectivity is temporally non-stationary, dependent
on frequency of oscillations and exhibit a degree of spatial
inhomogeneity. The majority of methods for brain connectivity
failed to examine the interactions among spatial, temporal,
and spectral modes. Here, we apply TCA to the adjacent
tensor constructed by time-frequency phase-coupling between
pairs of brain regions. By doing so, we extract brain networks
characterized by low-dimensional components with three fac-
tors. The temporal courses, representing the time evolution of
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frequency-specific brain connectivity, are analyzed by correla-
tion with time series of musical features extracted from music
stimuli. We firstly validate the proposed method in simulation.
Then we use it to the real EEG data recorded during free music
listening. The identified brain networks with distinct spectral
mode were in line with those previously published in the fMRI
and EEG studies. The proposed method seems valuable for
characterization of temporal and spectral evolution of coupling
between brain regions during freely listening to music or other
naturalistic stimuli.

APPENDIX

We run ALS optimization procedure at each component
number R 20 times from random initial conditions. We then
average data fits across many runs, resulting in averaged
data fit (Fig. 5.A). Subsequently, the DIF, and DIFFIT were
computed, as shown in Fig. 5.B. The DIT curve was smoothed
by polynomial curve fitting since it usually fails to provide
useful information due to fluctuations on DIF [30]. The two
local maximums on DIFFIT curve at R = 5 and R = 25
indicate two positions on DIF curve that have fast dropping
rate. Due to the low Fit value at the range R < 15, we selected
the local maximum R = 25 as the appropriate model order.

The data used in the current study are available from
the corresponding author on reasonable request and code to
reproduce the simulation presented in this paper is available
at https://github.com/yongjiezhu/CPforBrainConnectivity.
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