Näytä suppeat kuvailutiedot

dc.contributor.authorAnnala, Leevi
dc.contributor.authorÄyrämö, Sami
dc.contributor.authorPölönen, Ilkka
dc.date.accessioned2020-10-30T10:32:30Z
dc.date.available2020-10-30T10:32:30Z
dc.date.issued2020
dc.identifier.citationAnnala, L., Äyrämö, S., & Pölönen, I. (2020). Comparison of Machine Learning Methods in Stochastic Skin Optical Model Inversion. <i>Applied Sciences</i>, <i>10</i>(20), Article 7097. <a href="https://doi.org/10.3390/app10207097" target="_blank">https://doi.org/10.3390/app10207097</a>
dc.identifier.otherCONVID_43407945
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72408
dc.description.abstractIn this study, we compare six different machine learning methods in the inversion of a stochastic model for light propagation in layered media, and use the inverse models to estimate four parameters of the skin from the simulated data: melanin concentration, hemoglobin volume fraction, and thicknesses of epidermis and dermis. The aim of this study is to determine the best methods for stochastic model inversion in order to improve current methods in skin related cancer diagnostics and in the future develop a non-invasive way to measure the physical parameters of the skin based partially on the results of the study. Of the compared methods, which are convolutional neural network, multi-layer perceptron, lasso, stochastic gradient descent, and linear support vector machine regressors, we find the convolutional neural network to be the most accurate in the inversion task.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesApplied Sciences
dc.rightsCC BY 4.0
dc.subject.otherskin
dc.subject.otherphysical parameter retrieval
dc.subject.otherconvolutional neural network
dc.subject.othermodel inversion
dc.titleComparison of Machine Learning Methods in Stochastic Skin Optical Model Inversion
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202010306452
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2076-3417
dc.relation.numberinseries20
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber314519
dc.subject.ysokoneoppiminen
dc.subject.ysoneuroverkot
dc.subject.ysoihosyöpä
dc.subject.ysodiagnostiikka
dc.subject.ysospektrikuvaus
dc.subject.ysokuvantaminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p13613
jyx.subject.urihttp://www.yso.fi/onto/yso/p416
jyx.subject.urihttp://www.yso.fi/onto/yso/p26364
jyx.subject.urihttp://www.yso.fi/onto/yso/p3532
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/app10207097
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundinginformationThis research was funded by the Academy of Finland Grant No. 314519.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail
Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0