Näytä suppeat kuvailutiedot

dc.contributor.authorReichert, Tom
dc.contributor.authorInghirami, Gabriele
dc.contributor.authorBleicher, Marcus
dc.date.accessioned2020-10-26T11:36:43Z
dc.date.available2020-10-26T11:36:43Z
dc.date.issued2020
dc.identifier.citationReichert, T., Inghirami, G., & Bleicher, M. (2020). Probing chemical freeze-out criteria in relativistic nuclear collisions with coarse grained transport simulations. <i>European Physical Journal A</i>, <i>56</i>(10), Article 267. <a href="https://doi.org/10.1140/epja/s10050-020-00273-y" target="_blank">https://doi.org/10.1140/epja/s10050-020-00273-y</a>
dc.identifier.otherCONVID_42895668
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72330
dc.description.abstractWe introduce a novel approach based on elastic and inelastic scattering rates to extract the hyper-surface of the chemical freeze-out from a hadronic transport model in the energy range from Elab = 1.23 AGeV to √sNN = 62.4 GeV. For this study, the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model combined with a coarse-graining method is employed. The chemical freeze-out distribution is reconstructed from the pions through several decay and re-formation chains involving resonances and taking into account inelastic, pseudo-elastic and string excitation reactions. The extracted average temperature and baryon chemical potential are then compared to statistical model analysis. Finally we investigate various freeze-out criteria suggested in the literature. We confirm within this microscopic dynamical simulation, that the chemical freeze-out at all energies coincides with ⟨E⟩/⟨N⟩ ≈1 GeV, while other criteria, like s/T3 = 7 and nB+nB¯ ≈ 0.12 fm−3 are limited to higher collision energies.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesEuropean Physical Journal A
dc.rightsCC BY 4.0
dc.subject.otherrelativistic nuclear collisions
dc.titleProbing chemical freeze-out criteria in relativistic nuclear collisions with coarse grained transport simulations
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202010266381
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineTeoreettinen fysiikkafi
dc.contributor.oppiaineTheoretic Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1434-6001
dc.relation.numberinseries10
dc.relation.volume56
dc.type.versionpublishedVersion
dc.rights.copyright© The Authors, 2020
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber297058
dc.subject.ysoydinfysiikka
dc.subject.ysohiukkasfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
jyx.subject.urihttp://www.yso.fi/onto/yso/p15576
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1140/epja/s10050-020-00273-y
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThe authors thank Paula Hillmann, Michael Wondrak, Vincent Gaebel, Michel Bonne, Alexander Elz and Harri Niemi for fruitful discussions. G. Inghirami is supported by the Academy of Finland, Project no. 297058. This work was supported by Deutscher Akademischer Austauschdienst (DAAD), Helmholtz Forschungsakademie Hessen (HFHF) and in the framework of COST Action CA15213 (THOR). The computational resources were provided by the Center for Scientific Computing (CSC) of the Goethe-University Frankfurt. Open Access funding enabled and organized by Projekt DEAL.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0