Show simple item record

dc.contributor.authorGolovchanskiy, I.A.
dc.contributor.authorAbramov N.N.
dc.contributor.authorStolyarov, V.S.
dc.contributor.authorChichkov, V.I.
dc.contributor.authorSilaev, M.
dc.contributor.authorShchetinin, I.V.
dc.contributor.authorGolubov, A.A.
dc.contributor.authorRyazanov, V.V.
dc.contributor.authorUstinov, A.V.
dc.contributor.authorKupriyanov, M.Yu.
dc.date.accessioned2020-09-02T05:15:34Z
dc.date.available2020-09-02T05:15:34Z
dc.date.issued2020
dc.identifier.citationGolovchanskiy, I.A., Abramov N.N., Stolyarov, V.S., Chichkov, V.I., Silaev, M., Shchetinin, I.V., Golubov, A.A., Ryazanov, V.V., Ustinov, A.V., Kupriyanov, M.Yu. (2020). Magnetization Dynamics in Proximity-Coupled Superconductor-Ferromagnet-Superconductor Multilayers. <i>Physical Review Applied</i>, <i>14</i>(2), Article 024086. <a href="https://doi.org/10.1103/PhysRevApplied.14.024086" target="_blank">https://doi.org/10.1103/PhysRevApplied.14.024086</a>
dc.identifier.otherCONVID_41848809
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71591
dc.description.abstractIn this work, magnetization dynamics is studied in superconductor-ferromagnet-superconductor three-layered films in a wide frequency, field, and temperature ranges using the broad-band ferromagnetic resonance measurement technique. It is shown that in the presence of both superconducting layers and of superconducting proximity at both superconductor-ferromagnet interfaces a massive shift of the ferromagnetic resonance to higher frequencies emerges. The phenomenon is robust and essentially long-range: it has been observed for a set of samples with the thickness of ferromagnetic layer in the range from tens up to hundreds of nanometers. The resonance frequency shift is characterized by proximity-induced magnetic anisotropies: by the positive in-plane uniaxial anisotropy and by the drop of magnetization. The shift and the corresponding uniaxial anisotropy grow with the thickness of the ferromagnetic layer. For instance, the anisotropy reaches 0.27 T in experiment for a sample with a 350-nm-thick ferromagnetic layer, and about 0.4 T in predictions, which makes it a ferromagnetic film structure with the highest anisotropy and the highest natural resonance frequency ever reported. Various scenarios for the superconductivity-induced magnetic anisotropy are discussed. As a result, the origin of the phenomenon remains unclear. Application of the proximity-induced anisotropies in superconducting magnonics is proposed as a way for manipulations with a spin-wave spectrum.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofseriesPhysical Review Applied
dc.rightsIn Copyright
dc.subject.othermagnetization dynamics
dc.subject.othermagnons
dc.subject.otherproximity effect
dc.subject.otherspin waves
dc.subject.otherferromagnets
dc.subject.othermultilayer thin films
dc.subject.othertype-II superconductors
dc.titleMagnetization Dynamics in Proximity-Coupled Superconductor-Ferromagnet-Superconductor Multilayers
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202009025715
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.relation.issn2331-7019
dc.relation.numberinseries2
dc.relation.volume14
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysomagneettiset ominaisuudet
dc.subject.ysosuprajohtavuus
dc.subject.ysoohutkalvot
dc.subject.ysosuprajohteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p597
jyx.subject.urihttp://www.yso.fi/onto/yso/p9398
jyx.subject.urihttp://www.yso.fi/onto/yso/p16644
jyx.subject.urihttp://www.yso.fi/onto/yso/p9946
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1103/PhysRevApplied.14.024086
jyx.fundinginformationThe authors acknowledge the Ministry of Science and Higher Education of the Russian Federation in the framework of the State Program (Project No. 0718-2020- 0025) for support in microwave experiments, the Russian Science Foundation (Project No. 20-69-47013) for support in theoretical studies, and the Russian Foundation for Basic Research (Projects No. 19-02-00316 and No. 19-02- 00981) for support in technology and preliminary sample characterization.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright