Näytä suppeat kuvailutiedot

dc.contributor.authorGolovchanskiy, I.A.
dc.contributor.authorAbramov, N.N.
dc.contributor.authorStolyarov, V.S.
dc.contributor.authorChichkov, V.I.
dc.contributor.authorSilaev, M.
dc.contributor.authorShchetinin, I.V.
dc.contributor.authorGolubov, A.A.
dc.contributor.authorRyazanov, V.V.
dc.contributor.authorUstinov, A.V.
dc.contributor.authorKupriyanov, M.Yu.
dc.date.accessioned2020-09-02T05:15:34Z
dc.date.available2020-09-02T05:15:34Z
dc.date.issued2020
dc.identifier.citationGolovchanskiy, I.A., Abramov, N.N., Stolyarov, V.S., Chichkov, V.I., Silaev, M., Shchetinin, I.V., Golubov, A.A., Ryazanov, V.V., Ustinov, A.V., & Kupriyanov, M.Yu. (2020). Magnetization Dynamics in Proximity-Coupled Superconductor-Ferromagnet-Superconductor Multilayers. <i>Physical Review Applied</i>, <i>14</i>(2), Article 024086. <a href="https://doi.org/10.1103/PhysRevApplied.14.024086" target="_blank">https://doi.org/10.1103/PhysRevApplied.14.024086</a>
dc.identifier.otherCONVID_41848809
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71591
dc.description.abstractIn this work, magnetization dynamics is studied in superconductor-ferromagnet-superconductor three-layered films in a wide frequency, field, and temperature ranges using the broad-band ferromagnetic resonance measurement technique. It is shown that in the presence of both superconducting layers and of superconducting proximity at both superconductor-ferromagnet interfaces a massive shift of the ferromagnetic resonance to higher frequencies emerges. The phenomenon is robust and essentially long-range: it has been observed for a set of samples with the thickness of ferromagnetic layer in the range from tens up to hundreds of nanometers. The resonance frequency shift is characterized by proximity-induced magnetic anisotropies: by the positive in-plane uniaxial anisotropy and by the drop of magnetization. The shift and the corresponding uniaxial anisotropy grow with the thickness of the ferromagnetic layer. For instance, the anisotropy reaches 0.27 T in experiment for a sample with a 350-nm-thick ferromagnetic layer, and about 0.4 T in predictions, which makes it a ferromagnetic film structure with the highest anisotropy and the highest natural resonance frequency ever reported. Various scenarios for the superconductivity-induced magnetic anisotropy are discussed. As a result, the origin of the phenomenon remains unclear. Application of the proximity-induced anisotropies in superconducting magnonics is proposed as a way for manipulations with a spin-wave spectrum.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofseriesPhysical Review Applied
dc.rightsIn Copyright
dc.subject.othermagnetization dynamics
dc.subject.othermagnons
dc.subject.otherproximity effect
dc.subject.otherspin waves
dc.subject.otherferromagnets
dc.subject.othermultilayer thin films
dc.subject.othertype-II superconductors
dc.titleMagnetization Dynamics in Proximity-Coupled Superconductor-Ferromagnet-Superconductor Multilayers
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202009025715
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2331-7019
dc.relation.numberinseries2
dc.relation.volume14
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysomagneettiset ominaisuudet
dc.subject.ysosuprajohtavuus
dc.subject.ysoohutkalvot
dc.subject.ysosuprajohteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p597
jyx.subject.urihttp://www.yso.fi/onto/yso/p9398
jyx.subject.urihttp://www.yso.fi/onto/yso/p16644
jyx.subject.urihttp://www.yso.fi/onto/yso/p9946
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1103/PhysRevApplied.14.024086
jyx.fundinginformationThe authors acknowledge the Ministry of Science and Higher Education of the Russian Federation in the framework of the State Program (Project No. 0718-2020- 0025) for support in microwave experiments, the Russian Science Foundation (Project No. 20-69-47013) for support in theoretical studies, and the Russian Foundation for Basic Research (Projects No. 19-02-00316 and No. 19-02- 00981) for support in technology and preliminary sample characterization.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright