dc.contributor.author | Abdi, Younes | |
dc.contributor.author | Ristaniemi, Tapani | |
dc.date.accessioned | 2020-08-17T10:54:19Z | |
dc.date.available | 2020-08-17T10:54:19Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Abdi, Y., & Ristaniemi, T. (2020). The Max-Product Algorithm Viewed as Linear Data-Fusion : A Distributed Detection Scenario. <i>IEEE Transactions on Wireless Communications</i>, <i>19</i>(11), 7585-7597. <a href="https://doi.org/10.1109/twc.2020.3012910" target="_blank">https://doi.org/10.1109/twc.2020.3012910</a> | |
dc.identifier.other | CONVID_41697701 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/71401 | |
dc.description.abstract | In this paper, we disclose the statistical behavior of the max-product algorithm configured to solve a maximum a posteriori (MAP) estimation problem in a network of distributed agents. Specifically, we first build a distributed hypothesis test conducted by a max-product iteration over a binary-valued pairwise Markov random field and show that the decision variables obtained are linear combinations of the local log-likelihood ratios observed in the network. Then, we use these linear combinations to formulate the system performance in terms of the false-alarm and detection probabilities. Our findings indicate that, in the hypothesis test concerned, the optimal performance of the max-product algorithm is obtained by an optimal linear data-fusion scheme and the behavior of the max-product algorithm is very similar to the behavior of the sum-product algorithm. Consequently, we demonstrate that the optimal performance of the max-product iteration is closely achieved via a linear version of the sum-product algorithm, which is optimized based on statistics received at each node from its one-hop neighbors. Finally, we verify our observations via computer simulations. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.relation.ispartofseries | IEEE Transactions on Wireless Communications | |
dc.rights | In Copyright | |
dc.subject.other | statistical inference | |
dc.subject.other | distributed systems | |
dc.subject.other | max-product algorithm | |
dc.subject.other | sum-product algorithm | |
dc.subject.other | linear data-fusion | |
dc.subject.other | Markov random fields | |
dc.subject.other | factor graphs | |
dc.subject.other | spectrum sensing | |
dc.title | The Max-Product Algorithm Viewed as Linear Data-Fusion : A Distributed Detection Scenario | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202008175537 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 7585-7597 | |
dc.relation.issn | 1536-1276 | |
dc.relation.numberinseries | 11 | |
dc.relation.volume | 19 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020 IEEE | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | algoritmit | |
dc.subject.yso | Markovin ketjut | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14524 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13075 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1109/twc.2020.3012910 | |
dc.type.okm | A1 | |