Towards explainable artificial intelligence (XAI)
Tekijät
Päivämäärä
2020Tekijänoikeudet
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
2000-luvun aikana tekoälysovellukset ovat saavuttaneet erinomaisen suorituskyvyn useissa eri tehtävissä. Suuret datajoukot, kasvava laskennallinen teho sekä yhä monimutkaisemmat koneoppimismallit ovat mahdollistaneet sen. Valitettavasti nämä monimutkaiset mallit ovat usein vain mustia laatikoita ihmiskäyttäjille ja käyttäjällä
on vaikeuksia ymmärtää ja luottaa tekoälysysteemin lopputuloksiin. Selittävän tekoälyn osa-alueella on ollut suuri määrä tutkimusta sellaisten menetelmien kehittämiseksi, jotka lisäisivät tekoälysysteemien selittävyyttä. Tämä opinnäytetyö sisältää sekä kirjallisuuskatsauksen selittävän tekoälyn tutkimuksesta että kokeilun, jossa kartoitettiin yksinkertaisilla tekoälymenetelmillä ECR-ionilähteen optimaalisia parametreja maksimaaliselle ionisuihkun intensiteetille. In the 21st century, the applications of artificial intelligence (AI) have achieved great performance in various tasks. Large datasets, increasing computational power and more complex machine learning models have made it possible. Unfortunately, these complex models are often only black boxes to human users and the user has difficulties to understand and trust the outcomes of AI systems. There has been a great amount of research in the field
of explainable artificial intelligence (XAI) to develop methods that increase the explainability of AI systems. In addition to a literature review of the research in XAI, the present thesis includes a small project in which the parameters of an ECR ion source have been surveyed via simple machine learning methods in order to find the optimal parameters for the maximal ion beam intensity.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29556]
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Recent Applications of Explainable AI (XAI) : A Systematic Literature Review
Saarela, Mirka; Podgorelec, Vili (MDPI, 2024)This systematic literature review employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to investigate recent applications of explainable AI (XAI) over the past three years. ... -
Towards explainable interactive multiobjective optimization : R-XIMO
Misitano, Giovanni; Afsar, Bekir; Lárraga, Giomara; Miettinen, Kaisa (Springer Science and Business Media LLC, 2022)In interactive multiobjective optimization methods, the preferences of a decision maker are incorporated in a solution process to find solutions of interest for problems with multiple conflicting objectives. Since multiple ... -
Towards a Great Design of Conceptual Modelling
Kiyoki, Yasushi; Thalheim, Bernhard; Duží, Marie; Jaakkola, Hannu; Chawakitchareon, Petchporn; Heimbürger, Anneli (IOS Press, 2020)Humankind faces a most crucial mission; we must endeavour, on a global scale, to restore and improve our natural and social environments. This is a big challenge for global information systems development and for their ... -
LiquidAI : Towards an Isomorphic AI/ML System Architecture for the Cloud-Edge Continuum
Systä, Kari; Pautasso, Cesare; Taivalsaari, Antero; Mikkonen, Tommi (Springer Nature Switzerland, 2023)A typical Internet of Things (IoT) system consists of a large number of different subsystems and devices, including sensors and actuators, gateways that connect them to the Internet, cloud services, end-user applications ... -
Towards Liquid AI in IoT with WebAssembly : A Prototype Implementation
Kotilainen, Pyry; Heikkilä, Ville; Systä, Kari; Mikkonen, Tommi (Springer, 2023)An Internet of Things (IoT) system typically comprises numerous subsystems and devices, such as sensors, actuators, gateways for internet connectivity, cloud services, end-user applications, and analytics. Currently, these ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.