University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Towards explainable artificial intelligence (XAI)

Thumbnail
View/Open
2.6 Mb

Downloads:  
Show download detailsHide download details  
Authors
Haverinen, Tiia
Date
2020
Discipline
TietotekniikkaMathematical Information Technology
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

 
2000-luvun aikana tekoälysovellukset ovat saavuttaneet erinomaisen suorituskyvyn useissa eri tehtävissä. Suuret datajoukot, kasvava laskennallinen teho sekä yhä monimutkaisemmat koneoppimismallit ovat mahdollistaneet sen. Valitettavasti nämä monimutkaiset mallit ovat usein vain mustia laatikoita ihmiskäyttäjille ja käyttäjällä on vaikeuksia ymmärtää ja luottaa tekoälysysteemin lopputuloksiin. Selittävän tekoälyn osa-alueella on ollut suuri määrä tutkimusta sellaisten menetelmien kehittämiseksi, jotka lisäisivät tekoälysysteemien selittävyyttä. Tämä opinnäytetyö sisältää sekä kirjallisuuskatsauksen selittävän tekoälyn tutkimuksesta että kokeilun, jossa kartoitettiin yksinkertaisilla tekoälymenetelmillä ECR-ionilähteen optimaalisia parametreja maksimaaliselle ionisuihkun intensiteetille.
 
In the 21st century, the applications of artificial intelligence (AI) have achieved great performance in various tasks. Large datasets, increasing computational power and more complex machine learning models have made it possible. Unfortunately, these complex models are often only black boxes to human users and the user has difficulties to understand and trust the outcomes of AI systems. There has been a great amount of research in the field of explainable artificial intelligence (XAI) to develop methods that increase the explainability of AI systems. In addition to a literature review of the research in XAI, the present thesis includes a small project in which the parameters of an ECR ion source have been surveyed via simple machine learning methods in order to find the optimal parameters for the maximal ion beam intensity.
 
Keywords
explainability interpretability ion sources tekoäly koneoppiminen ionit artificial intelligence machine learning ions
URI

http://urn.fi/URN:NBN:fi:jyu-202007285401

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [24542]

Related items

Showing items with similar title or keywords.

  • Towards explainable interactive multiobjective optimization : R-XIMO 

    Misitano, Giovanni; Afsar, Bekir; Lárraga, Giomara; Miettinen, Kaisa (Springer Science and Business Media LLC, 2022)
    In interactive multiobjective optimization methods, the preferences of a decision maker are incorporated in a solution process to find solutions of interest for problems with multiple conflicting objectives. Since multiple ...
  • Towards a Great Design of Conceptual Modelling 

    Kiyoki, Yasushi; Thalheim, Bernhard; Duží, Marie; Jaakkola, Hannu; Chawakitchareon, Petchporn; Heimbürger, Anneli (IOS Press, 2020)
    Humankind faces a most crucial mission; we must endeavour, on a global scale, to restore and improve our natural and social environments. This is a big challenge for global information systems development and for their ...
  • Strategic cyber threat intelligence : Building the situational picture with emerging technologies 

    Voutilainen, Janne; Kari, Martti (Academic Conferences International, 2020)
    In 2019, e-criminals adopted new tactics to demand enormous ransoms from large organizations by using ransomware, a phenomenon known as “big game hunting.” Big game hunting is an excellent example of a sophisticated and ...
  • Explainable AI for Industry 4.0 : Semantic Representation of Deep Learning Models 

    Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2022)
    Artificial Intelligence is an important asset of Industry 4.0. Current discoveries within machine learning and particularly in deep learning enable qualitative change within the industrial processes, applications, systems ...
  • Sähköä ja alkemiaa : tekoälydiskurssit Yleisradion verkkoartikkeleissa 

    Slotte Dufva, Tomi; Mertala, Pekka (Media- ja viestintätieteellinen seura MEVI ry, 2021)
    Tässä artikkelissa tarkastelemme sitä, millaisena ja miten tekoäly esitetään suomalaisessa julkisessa keskustelussa, ja ketkä tekoälystä suurelle yleisölle kertovat. Aineistona olemme käyttäneet Yleisradion verkkosivujen ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre