Näytä suppeat kuvailutiedot

dc.contributor.authorBriselet, R.
dc.contributor.authorTheisen, Ch.
dc.contributor.authorSulignano, B.
dc.contributor.authorAiriau, M.
dc.contributor.authorAuranen, K.
dc.contributor.authorCox, D. M.
dc.contributor.authorDéchery, F.
dc.contributor.authorDrouart, A.
dc.contributor.authorFavier, Z.
dc.contributor.authorGall, B.
dc.contributor.authorGoigoux, T.
dc.contributor.authorGrahn, T.
dc.contributor.authorGreenlees, P. T.
dc.contributor.authorHauschild, K.
dc.contributor.authorHerzan, A.
dc.contributor.authorHerzberg, R.-D.
dc.contributor.authorJakobsson, U.
dc.contributor.authorJulin, R.
dc.contributor.authorJuutinen, S.
dc.contributor.authorKonki, J.
dc.contributor.authorLeino, M.
dc.contributor.authorLopez-Martens, A.
dc.contributor.authorMistry, A.
dc.contributor.authorNieminen, P.
dc.contributor.authorPakarinen, J.
dc.contributor.authorPapadakis, P.
dc.contributor.authorPeura, P.
dc.contributor.authorRey-Herme, E.
dc.contributor.authorRahkila, P.
dc.contributor.authorRubert, J.
dc.contributor.authorRuotsalainen, P.
dc.contributor.authorSandzelius, M.
dc.contributor.authorSarén, J.
dc.contributor.authorScholey, C.
dc.contributor.authorSorri, J.
dc.contributor.authorStolze, S.
dc.contributor.authorUusitalo, J.
dc.contributor.authorVandebrouck, M.
dc.contributor.authorWard, A.
dc.contributor.authorZielińska, M.
dc.contributor.authorBally, B.
dc.contributor.authorBender, M.
dc.contributor.authorRyssens, W.
dc.date.accessioned2020-07-13T06:44:51Z
dc.date.available2020-07-13T06:44:51Z
dc.date.issued2020
dc.identifier.citationBriselet, R., Theisen, Ch., Sulignano, B., Airiau, M., Auranen, K., Cox, D. M., Déchery, F., Drouart, A., Favier, Z., Gall, B., Goigoux, T., Grahn, T., Greenlees, P. T., Hauschild, K., Herzan, A., Herzberg, R.-D., Jakobsson, U., Julin, R., Juutinen, S., . . . Ryssens, W. (2020). In-beam γ-ray and electron spectroscopy of Md249,251. <i>Physical Review C</i>, <i>102</i>(1), Article 014307. <a href="https://doi.org/10.1103/physrevc.102.014307" target="_blank">https://doi.org/10.1103/physrevc.102.014307</a>
dc.identifier.otherCONVID_41554926
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/71132
dc.description.abstractThe odd-Z 251Md nucleus was studied using combined γ-ray and conversion-electron in-beam spectroscopy. Besides the previously observed rotational band based on the [521]1/2− configuration, another rotational structure has been identified using γ−γ coincidences. The use of electron spectroscopy allowed the rotational bands to be observed over a larger rotational frequency range. Using the transition intensities that depend on the gyromagnetic factor, a [514]7/2− single-particle configuration has been inferred for this band, i.e., the ground-state band. A physical background that dominates the electron spectrum with an intensity of ≃60% was well reproduced by simulating a set of unresolved excited bands. Moreover, a detailed analysis of the intensity profile as a function of the angular momentum provided a method for deriving the orbital gyromagnetic factor, namely gK=0.69+0.19−0.16 for the ground-state band. The odd-Z 249Md was studied using γ-ray in-beam spectroscopy. Evidence for octupole correlations resulting from the mixing of the Δl=Δj=3 [521]3/2− and [633]7/2+ Nilsson orbitals were found in both 249,251Md. A surprising similarity of the 251Md ground-state band transition energies with those of the excited band of 255Lr has been discussed in terms of identical bands. Skyrme-Hartree-Fock-Bogoliubov calculations were performed to investigate the origin of the similarities between these bands.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review C
dc.rightsIn Copyright
dc.subject.othercollective levels
dc.subject.otherelectromagnetic transitions
dc.subject.othernuclear spin and parity
dc.titleIn-beam γ-ray and electron spectroscopy of Md249,251
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202007135299
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineYdin- ja kiihdytinfysiikan huippuyksikköfi
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineCentre of Excellence in Nuclear and Accelerator Based Physicsen
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2469-9985
dc.relation.numberinseries1
dc.relation.volume102
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysospektroskopia
dc.subject.ysoydinfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p10176
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1103/physrevc.102.014307
jyx.fundinginformationSupport has been provided by the EU 7th Framework Programme Integrating Activities-Transnational Access Project No. 262010 (ENSAR), by the Academy of Finland under the Finnish Centre of Excellence Programme (Nuclear and Accelerator Based Physics Programme at JYFL, Contract No. 213503), and by the UK STFC. We thank the European Gamma-Ray Spectroscopy pool (Gammapool) for the loan of the germanium detectors used in the SAGE array. B.B. acknowledges the support of the Espace de Structure et de réactions Nucléaire Théorique (ESNT) at CEA in France. The self-consistent mean-field computations were performed using HPC resources of the computing center of the IN2P3/CNRS. W.R. gratefully acknowledges support by U.S. DOE Grant No. DE-SC0019521.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright