Task-based visual analytics for interactive multiobjective optimization
Hakanen, J., Miettinen, K., & Matković, K. (2021). Task-based visual analytics for interactive multiobjective optimization. Journal of the Operational Research Society, 72(9), 2073-2090. https://doi.org/10.1080/01605682.2020.1768809
Julkaistu sarjassa
Journal of the Operational Research SocietyPäivämäärä
2021Oppiaine
Laskennallinen tiedeMultiobjective Optimization GroupPäätöksen teko monitavoitteisestiComputational ScienceMultiobjective Optimization GroupDecision analytics utilizing causal models and multiobjective optimizationTekijänoikeudet
© 2020 Taylor & Francis
We study how visual interaction techniques considered in visual analytics can be utilized when implementing interactive multiobjective optimization methods, where a decision maker iteratively participates in the solution process. We want to benefit from previous research and avoid re-inventing ideas. Our aim is to widen awareness and increase the applicability of interactive methods for solving real-world problems. As a concrete approach, we introduce seven high-level tasks that are relevant for interactive methods. These high-level tasks are based on low-level tasks proposed in the visual analytics literature. In addition, we give an example on how the high-level tasks can be implemented and demonstrate this in the context of a real-world multiobjective optimization problem related to wastewater treatment plant operation. Finally, we make recommendations for implementations of interactive methods. We conclude that task-based visual analytics can help in implementing interaction between human decision makers and interactive multiobjective optimization methods.
...
Julkaisija
Taylor & FrancisISSN Hae Julkaisufoorumista
0160-5682Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/36007790
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Profilointi, SALisätietoja rahoituksesta
This research was supported by the Academy of Finland (grant no 311877) and is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization, jyu.fi/demo) of the University of Jyväskylä. VRVis is funded by BMVIT, BMDW, Styria, SFG and Vienna Business Agency in the scope of COMET - competence Centers for Excellent Technologies (854174) which is managed by FFG. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Interactivized : Visual Interaction for Better Decisions with Interactive Multiobjective Optimization
Hakanen, Jussi; Radoš, Sanjin; Misitano, Giovanni; Saini, Bhupinder S.; Miettinen, Kaisa; Matković, Krešimir (IEEE, 2022)In today’s data-driven world, decision makers are facing many conflicting objectives. Since there is usually no solution that optimizes all objectives simultaneously, the aim is to identify a solution with acceptable ... -
Interactive evolutionary multiobjective optimization with modular physical user interface
Mazumdar, Atanu; Otayagich, Stefan; Miettinen, Kaisa (ACM, 2022)Incorporating the preferences of a domain expert, a decision-maker (DM), in solving multiobjective optimization problems increased in popularity in recent years. The DM can choose to use different types of preferences ... -
Detector-based visual analysis of time-series data
Wartiainen, Pekka (University of Jyväskylä, 2015) -
NAUTILUS Navigator : free search interactive multiobjective optimization without trading-off
Ruiz, Ana B.; Ruiz, Francisco; Miettinen, Kaisa; Delgado-Antequera, Laura; Ojalehto, Vesa (Springer US, 2019)We propose a novel combination of an interactive multiobjective navigation method and a trade-off free way of asking and presenting preference information. The NAUTILUS Navigator is a method that enables the decision maker ... -
SCORE Band Visualizations : Supporting Decision Makers in Comparing High-Dimensional Outcome Vectors in Multiobjective Optimization
Saini, Bhupinder S.; Miettinen, Kaisa; Klamroth, Kathrin; Steuer, Ralph E.; Dächert, Kerstin (IEEE, 2024)Clearly arranged visualizations are needed in multiobjective optimization problems with a large number of objective functions, when a large number of Pareto optimal outcome vectors (vectors of objective function values) ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.