Privacy for learning analytics in the age of big data – exploring conditions for design of privacy solutions
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2020Tekijänoikeudet
© The Author & University of Jyväskylä
Introduction of learning analytics to education opened up the can of worms
related to privacy issues that come with big data. Privacy issues are increasingly
‘wicked problems’ that call for a rethinking of the key artefacts involved. Global
information systems make privacy a challenge that go to the center of solution
design and information science research. In this dissertation research we
exemplify the long and winding process from capturing questions of concern, to
constructing conceptual artefacts to begin discussing the concerns, to proposing
the first constructs that could lead to technical solutions—all within the context
of technology enhanced learning and education.
Learning analytics is a new discipline based on an increasing access to data,
which will be extended by introduction of more and more sensors that are part
of smart classrooms and intelligent campus projects. There is a gap between
people’s online sharing of personal data and their concern about privacy.
However, online practices are volatile, which make action design research and
design science research an appropriate approach to explore conditions for design
of privacy solutions. The research has been carried out taking part in two practice
communities, the learning analytics knowledge community, and the learning
technologies standards community.
The contributions of this PhD research are both theoretical and practical.
Privacy is defined in the context of big data; the theory of contextual integrity is
extended to include the concept of ‘context trigger’, and design proposals explore
the role of privacy policies in regulating data sharing. Risks and benefits of data
sharing is explored to develop a learning analytics design space model. In
addition, other constructs to facilitate discourse on data sharing in context are
developed.
Keywords: privacy, privacy engineering, contextual integrity, personal data,
learning analytics, big data
...
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-8190-7ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Hoel, T., Chen, W., & Mason, J. (2016). Data sharing for learning analytics – exploring risks and benefits through questioning. Journal of the Society of e-Learning. Vol.1. No.1.
- Artikkeli II: Hoel, T. & Chen, W. (2018). Privacy and data protection in learning analytics should be motivated by an Educational maxim - towards a proposal. Research and Practice in Technology Enhanced Learning. DOI: 10.1186/s41039-018-0086-8
- Artikkeli III: Hoel, T. & Chen, W. (2019). Privacy engineering for learning analytics in a global market – defining a point of reference. International Journal of Information and Learning Technology. DOI: 10.1108/IJILT-02-2019-0025
- Artikkeli IV: Hoel, T., & Chen, W. (2016). Privacy-driven design of learning analytics applications: exploring the design space of solutions for data sharing and interoperability. Journal of Learning Analytics, 3(1), 139–158. DOI: 10.18608/jla.2016.31.9
- Artikkeli V: Hoel, T. & Chen, W. (2015). Privacy in learning analytics – implications for system architecture. Watanabe, T. and Seta, K. (Eds.) (2015). Proceedings of the 11th International Conference on Knowledge Management.
- Artikkeli VI: Hoel, T. & Chen, W. (2016). Data sharing for learning analytics – designing conceptual artefacts and processes to foster interoperability. In Chen, W. et al. (Eds.) (2016). Proceedings of the 24th International Conference on Computers in Education. India: Asia-Pacific Society for Computers in Education.
- Artikkeli VII: Hoel, T. & Chen, W. (2018). Interaction between standardisation and research – a case study. In International Journal of Standardization Research (IJSR). Vol 16. Issue 1. DOI: 10.4018/IJSR.2018010102
- Artikkeli VIII: Hoel, T., Chen, W., & Gregersen, A.B. (2018). Are norwegian academic librarians ready to share usage data for learning analytics? Nordic Journal of Information Literacy in Higher Education,Vol 10, No 1. DOI: 10.15845/noril.v10i1.269
- Artikkeli IX: Hoel, T. & Mason, J. (2018). Standards for smart education - towards a development framework. Smart Learning Environments. Springer Open. DOI: 10.1186/s40561-018-0052-3
- Artikkeli X: Hoel, T. & Chen, W., & Pawlowski, J.M. Making context the central concept in privacy engineering. Submitted for review.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [871]
- Väitöskirjat [3599]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
CCTV-Exposure: System for Measuring User’s Privacy Exposure to CCTV Cameras
Turtiainen, Hannu; Costin, Andrei; Hämäläinen, Timo (Springer International Publishing, 2022)In this work, we present CCTV-Exposure – the first CCTV-aware solution to evaluate potential privacy exposure to closed-circuit television (CCTV) cameras. The objective was to develop a toolset for quantifying human exposure ... -
GDPR:n vaikutukset sosiaalisten verkkopalveluiden yksityisyyden suojaan
Puumala, Petteri (2020)Henkilötietojen suojaamisesta on muodostunut merkittävä puheenaihe niin kuluttajien, kuin yritysten ja organisaatioidenkin keskuudessa. Kuluttajien osalta aihe on herättänyt pääsääntöisesti huolta ja turvattomuutta, kun ... -
HTTP evästeiden uhkat tietosuojaselosteiden näkökulmasta
Salonen, Sari (2022)Teknologian kehittyminen ja internetin vahva läsnäolo jokapäiväisessä elämässämme on tuonut mukanaan paljon meitä hyödyttäviä lisäpalveluita ja asioita, mutta myös uhkia yksityisyydellemme. Verkkosivustojen ja palveluiden ... -
CCTV-FullyAware : toward end-to-end feasible privacy-enhancing and CCTV forensics applications
Turtiainen, Hannu; Costin, Andrei; Hämäläinen, Timo; Lahtinen, Tuomo; Sintonen, Lauri (IEEE, 2022)It is estimated that over 1 billion Closed-Circuit Television (CCTV) cameras are operational worldwide. The advertised main benefits of CCTV cameras have always been the same; physical security, safety, and crime deterrence. ... -
Perceived effectiveness of privacy policy and its association with trust and behavioral intention to participate in a digital workplace wellness program
Peltoniemi, Ari (2020)The Perceived Effectiveness of Privacy Policy (PEPP) is a topical issue in information privacy research. In this study we developed a research model applying Theory of Reasoned Action and the Privacy–Trust–Behavioral ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.