Näytä suppeat kuvailutiedot

dc.contributor.authorVerlinde, M.
dc.contributor.authorDockx, K.
dc.contributor.authorGeldhof, S.
dc.contributor.authorKönig, K.
dc.contributor.authorStuder, D.
dc.contributor.authorCocolios, T. E.
dc.contributor.authorde Groote, R. P.
dc.contributor.authorFerrer, R.
dc.contributor.authorKudryavtsev, Yu.
dc.contributor.authorKieck, T.
dc.contributor.authorMoore, I.
dc.contributor.authorNörtershäuser, W.
dc.contributor.authorRaeder, S.
dc.contributor.authorVan den Bergh, P.
dc.contributor.authorVan Duppen, P.
dc.contributor.authorWendt, K.
dc.date.accessioned2020-06-03T05:39:38Z
dc.date.available2020-06-03T05:39:38Z
dc.date.issued2020
dc.identifier.citationVerlinde, M., Dockx, K., Geldhof, S., König, K., Studer, D., Cocolios, T. E., de Groote, R. P., Ferrer, R., Kudryavtsev, Yu., Kieck, T., Moore, I., Nörtershäuser, W., Raeder, S., Van den Bergh, P., Van Duppen, P., & Wendt, K. (2020). On the performance of wavelength meters : Part 1 : consequences for medium-to-high-resolution laser spectroscopy. <i>Applied Physics B : Lasers and Optics</i>, <i>126</i>(5), Article 85. <a href="https://doi.org/10.1007/s00340-020-07425-4" target="_blank">https://doi.org/10.1007/s00340-020-07425-4</a>
dc.identifier.otherCONVID_35281396
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/69661
dc.description.abstractPresent-day laser-spectroscopy experiments increasingly rely on modern commercial devices to monitor, stabilize, and scan the wavelength of their probe laser. Recently, new techniques are capable of achieving unprecedented levels of precision on atomic and nuclear observables, pushing these devices to their performance limits. Considering the fact that these observables themselves are deduced from the frequency difference between specific atomic resonances, in the order of MHz–GHz, the uncertainty on the output of the device measuring the wavelength is often directly related to the final systematic uncertainty on the experimental results. Owing to its importance, the performance of several commercial wavelength meters was compared against different reference sources, including a Scanning Fabry–Pérot Interferometer (SFPI) and a frequency comb. Reproducible, wavelength- and device-dependent disagreements are observed, potentially skewing the experimental output at high precision. In this paper, a practical and relatively inexpensive wavelength meter characterization procedure is presented and validated. This method is capable of improving the precision on wavelength differences considerably depending on the device, while together with a second investigation that is published separately, (König et al., in Appl Phys B, 2020), it offers a full description of the expected wavelength meter performance for users.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesApplied Physics B : Lasers and Optics
dc.rightsIn Copyright
dc.subject.otherwavelength meters
dc.subject.otherlaser spectroscopy
dc.titleOn the performance of wavelength meters : Part 1 : consequences for medium-to-high-resolution laser spectroscopy
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202006033919
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0946-2171
dc.relation.numberinseries5
dc.relation.volume126
dc.type.versionacceptedVersion
dc.rights.copyright© Springer-Verlag GmbH Germany, part of Springer Nature 2020
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber654002
dc.relation.grantnumber654002
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/654002/EU//
dc.subject.ysospektroskopia
dc.subject.ysoaallonpituus
dc.subject.ysolasertekniikka
dc.subject.ysotutkimuslaitteet
dc.subject.ysomittauslaitteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p10176
jyx.subject.urihttp://www.yso.fi/onto/yso/p702
jyx.subject.urihttp://www.yso.fi/onto/yso/p20011
jyx.subject.urihttp://www.yso.fi/onto/yso/p2440
jyx.subject.urihttp://www.yso.fi/onto/yso/p3583
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s00340-020-07425-4
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramResearch infrastructures, H2020en
jyx.fundingprogramResearch infrastructures, H2020fi
jyx.fundinginformationThis work has received funding from Research Foundation Flanders (FWO, Belgium), from the Excellence of Science program (EOS, FWO-FNRS, Belgium), by GOA/2015/010 and STG/15/031 (BOF KU Leuven), by the Interuniversity Attraction Poles Program initiated by the Belgian Science Policy Office (BriX network P7/12), from the European Union’s Horizon 2020 research and innovation program under Grants Agreement no. 654002 (ENSAR2), from the European Research Council under the European Union’s Seventh Framework Program (ERC-2011-AdG-291561-HELIOS), from the German Federal Ministry of Educations and Research (BMBF) under contracts 05P19RDFN1 and 05P18RFCIA, and from the German Research Foundation (DFG) under contract DU 1134/1-2. M.V. is supported by an FWO grant (Aspirant-1121820N). A significant share of the research work described herein originates from R&D carried out in the frame of the FAIR Phase-0 program of LASPEC/NUSTAR.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright