Näytä suppeat kuvailutiedot

dc.contributor.authorFranks, Jordan
dc.contributor.authorVihola, Matti
dc.date.accessioned2020-05-26T10:14:16Z
dc.date.available2020-05-26T10:14:16Z
dc.date.issued2020
dc.identifier.citationFranks, J., & Vihola, M. (2020). Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance. <i>Stochastic Processes and Their Applications</i>, <i>130</i>(10), 6157-6183. <a href="https://doi.org/10.1016/j.spa.2020.05.006" target="_blank">https://doi.org/10.1016/j.spa.2020.05.006</a>
dc.identifier.otherCONVID_35699370
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/69233
dc.description.abstractWe establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis–Hastings and delayed-acceptance (DA) MCMC. Our ordering implies that IS is guaranteed to be competitive up to a factor depending on the supremum of the (marginal) IS weight. We elaborate upon the criterion in case of unbiased estimators as part of an auxiliary variable framework. We show how the criterion implies asymptotic variance guarantees for IS in terms of pseudo-marginal (PM) and DA corrections, essentially if the ratio of exact and approximate likelihoods is bounded. We also show that convergence of the IS chain can be less affected by unbounded high-variance unbiased estimators than PM and DA chains.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesStochastic Processes and Their Applications
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherasymptotic variance
dc.subject.otherdelayed-acceptance
dc.subject.otherimportance sampling
dc.subject.otherMarkov chain Monte Carlo
dc.subject.otherpseudo-marginal algorithm
dc.subject.otherunbiased estimator
dc.titleImportance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202005263485
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange6157-6183
dc.relation.issn0304-4149
dc.relation.numberinseries10
dc.relation.volume130
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Elsevier BV
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber274740
dc.relation.grantnumber312605
dc.relation.grantnumber284513
dc.subject.ysonumeeriset menetelmät
dc.subject.ysostokastiset prosessit
dc.subject.ysoestimointi
dc.subject.ysoMarkovin ketjut
dc.subject.ysoMonte Carlo -menetelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6588
jyx.subject.urihttp://www.yso.fi/onto/yso/p11400
jyx.subject.urihttp://www.yso.fi/onto/yso/p11349
jyx.subject.urihttp://www.yso.fi/onto/yso/p13075
jyx.subject.urihttp://www.yso.fi/onto/yso/p6361
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.spa.2020.05.006
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundinginformationSupport has been provided for JF and MV from the Academy of Finland (grants 274740, 284513 and 312605), and for JF from The Alan Turing Institute. JF thanks the organisers of the 2017 SMC course and workshop in Uppsala.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0