dc.contributor.author | Vihola, Matti | |
dc.contributor.author | Franks, Jordan | |
dc.date.accessioned | 2020-05-25T09:14:14Z | |
dc.date.available | 2020-05-25T09:14:14Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Vihola, M., & Franks, J. (2020). On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction. <i>Biometrika</i>, <i>107</i>(2), 381-395. <a href="https://doi.org/10.1093/biomet/asz078" target="_blank">https://doi.org/10.1093/biomet/asz078</a> | |
dc.identifier.other | CONVID_35689612 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/69182 | |
dc.description.abstract | Approximate Bayesian computation enables inference for complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation is often sensitive to the tolerance parameter: low tolerance leads to poor mixing and large tolerance entails excess bias. We propose an approach that involves using a relatively large tolerance for the Markov chain Monte Carlo sampler to ensure sufficient mixing and post-processing the output, leading to estimators for a range of finer tolerances. We introduce an approximate confidence interval for the related post-corrected estimators and propose an adaptive approximate Bayesian computation Markov chain Monte Carlo algorithm, which finds a balanced tolerance level automatically based on acceptance rate optimization. Our experiments show that post-processing-based estimators can perform better than direct Markov chain Monte Carlo targeting a fine tolerance, that our confidence intervals are reliable, and that our adaptive algorithm leads to reliable inference with little user specification. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Oxford University Press | |
dc.relation.ispartofseries | Biometrika | |
dc.rights | In Copyright | |
dc.subject.other | adaptive algorithm | |
dc.subject.other | approximate Bayesian computation | |
dc.subject.other | confidence interval | |
dc.subject.other | importance sampling | |
dc.subject.other | Markov chain Monte Carlo | |
dc.subject.other | tolerance choice | |
dc.title | On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202005253435 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 381-395 | |
dc.relation.issn | 0006-3444 | |
dc.relation.numberinseries | 2 | |
dc.relation.volume | 107 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020 Biometrika Trust | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 274740 | |
dc.relation.grantnumber | 284513 | |
dc.relation.grantnumber | 312605 | |
dc.subject.yso | bayesilainen menetelmä | |
dc.subject.yso | Markovin ketjut | |
dc.subject.yso | Monte Carlo -menetelmät | |
dc.subject.yso | algoritmit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17803 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13075 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6361 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14524 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1093/biomet/asz078 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Research costs of Academy Research Fellow, AoF | en |
jyx.fundingprogram | Research costs of Academy Research Fellow, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | Akatemiatutkijan tutkimuskulut, SA | fi |
jyx.fundingprogram | Akatemiatutkijan tutkimuskulut, SA | fi |
jyx.fundinginformation | This work was supported by the Academy of Finland. The authors thank CSC, IT Center for Science, Finland, for computational resources, and Christophe Andrieu for useful discussions. | |
dc.type.okm | A1 | |