Show simple item record

dc.contributor.authorVihola, Matti
dc.contributor.authorFranks, Jordan
dc.date.accessioned2020-05-25T09:14:14Z
dc.date.available2020-05-25T09:14:14Z
dc.date.issued2020
dc.identifier.citationVihola, M., & Franks, J. (2020). On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction. <i>Biometrika</i>, <i>107</i>(2), 381-395. <a href="https://doi.org/10.1093/biomet/asz078" target="_blank">https://doi.org/10.1093/biomet/asz078</a>
dc.identifier.otherCONVID_35689612
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/69182
dc.description.abstractApproximate Bayesian computation enables inference for complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation is often sensitive to the tolerance parameter: low tolerance leads to poor mixing and large tolerance entails excess bias. We propose an approach that involves using a relatively large tolerance for the Markov chain Monte Carlo sampler to ensure sufficient mixing and post-processing the output, leading to estimators for a range of finer tolerances. We introduce an approximate confidence interval for the related post-corrected estimators and propose an adaptive approximate Bayesian computation Markov chain Monte Carlo algorithm, which finds a balanced tolerance level automatically based on acceptance rate optimization. Our experiments show that post-processing-based estimators can perform better than direct Markov chain Monte Carlo targeting a fine tolerance, that our confidence intervals are reliable, and that our adaptive algorithm leads to reliable inference with little user specification.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.ispartofseriesBiometrika
dc.rightsIn Copyright
dc.subject.otheradaptive algorithm
dc.subject.otherapproximate Bayesian computation
dc.subject.otherconfidence interval
dc.subject.otherimportance sampling
dc.subject.otherMarkov chain Monte Carlo
dc.subject.othertolerance choice
dc.titleOn the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202005253435
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange381-395
dc.relation.issn0006-3444
dc.relation.numberinseries2
dc.relation.volume107
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 Biometrika Trust
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber274740
dc.relation.grantnumber284513
dc.relation.grantnumber312605
dc.subject.ysobayesilainen menetelmä
dc.subject.ysoMarkovin ketjut
dc.subject.ysoMonte Carlo -menetelmät
dc.subject.ysoalgoritmit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p17803
jyx.subject.urihttp://www.yso.fi/onto/yso/p13075
jyx.subject.urihttp://www.yso.fi/onto/yso/p6361
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1093/biomet/asz078
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundinginformationThis work was supported by the Academy of Finland. The authors thank CSC, IT Center for Science, Finland, for computational resources, and Christophe Andrieu for useful discussions.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright