dc.contributor.author | Yuan, Peng | |
dc.contributor.author | Zhang, Ruihua | |
dc.contributor.author | Selenius, Elli | |
dc.contributor.author | Ruan, Pengpeng | |
dc.contributor.author | Yao, Yangrong | |
dc.contributor.author | Zhou, Yang | |
dc.contributor.author | Malola, Sami | |
dc.contributor.author | Häkkinen, Hannu | |
dc.contributor.author | Teo, Boon K. | |
dc.contributor.author | Cao, Yang | |
dc.contributor.author | Zheng, Nanfeng | |
dc.date.accessioned | 2020-05-19T06:49:21Z | |
dc.date.available | 2020-05-19T06:49:21Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Yuan, P., Zhang, R., Selenius, E., Ruan, P., Yao, Y., Zhou, Y., Malola, S., Häkkinen, H., Teo, B. K., Cao, Y., & Zheng, N. (2020). Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials. <i>Nature Communications</i>, <i>11</i>, Article 2229. <a href="https://doi.org/10.1038/s41467-020-16062-6" target="_blank">https://doi.org/10.1038/s41467-020-16062-6</a> | |
dc.identifier.other | CONVID_35401605 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/69057 | |
dc.description.abstract | Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm2 V−1 s−1, and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Nature Publishing Group | |
dc.relation.ispartofseries | Nature Communications | |
dc.rights | CC BY 4.0 | |
dc.subject.other | electronic properties and materials | |
dc.subject.other | nanoparticles | |
dc.subject.other | nanowires | |
dc.title | Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202005193310 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2041-1723 | |
dc.relation.volume | 11 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Authors 2020 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 294217 | |
dc.relation.grantnumber | 319208 | |
dc.subject.yso | nanorakenteet | |
dc.subject.yso | nanomateriaalit | |
dc.subject.yso | puolijohteet | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25315 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p22976 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18256 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1038/s41467-020-16062-6 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research costs of Academy Professor, AoF | en |
jyx.fundingprogram | Research costs of Academy Professor, AoF | en |
jyx.fundingprogram | Akatemiaprofessorin tutkimuskulut, SA | fi |
jyx.fundingprogram | Akatemiaprofessorin tutkimuskulut, SA | fi |
jyx.fundinginformation | The experimental work was supported by the National Key R&D Program of China (2017YFA0207302, 2018YFA0306900 and 2018YFA0209500), the National Natural Science Foundation of China (21890752, 21731005, 21721001 and 21872114) and the fundamental research funds for central universities (20720180026). The computational work was supported by the Academy of Finland (grants 294217, 319208, and H.H.’s Academy Professorship). N.F.Z. acknowledges the support from the Tencent Foundation through the XPLORER PRIZE. H.H. acknowledges support from China’s National Innovation and Intelligence Introduction Base visitor program. E.S. acknowledges Emil Aaltonen Foundation for a Ph.D study grant and thanks O. Lopez-Estrada for technical help in setting up the DFT calculations. All the computations were done at the Barcelona Supercomputing Center under a PRACE computing grant 2018194723. | |
dc.type.okm | A1 | |