Näytä suppeat kuvailutiedot

dc.contributor.authorAbdi, Younes
dc.contributor.authorRistaniemi, Tapani
dc.date.accessioned2020-05-14T10:55:29Z
dc.date.available2020-05-14T10:55:29Z
dc.date.issued2020
dc.identifier.citationAbdi, Y., & Ristaniemi, T. (2020). Optimization of Linearized Belief Propagation for Distributed Detection. <i>IEEE Transactions on Communications</i>, <i>68</i>(2), 959-973. <a href="https://doi.org/10.1109/TCOMM.2019.2956037" target="_blank">https://doi.org/10.1109/TCOMM.2019.2956037</a>
dc.identifier.otherCONVID_33664738
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68987
dc.description.abstractIn this paper, we investigate distributed inference schemes, over binary-valued Markov random fields, which are realized by the belief propagation (BP) algorithm. We first show that a decision variable obtained by the BP algorithm in a network of distributed agents can be approximated by a linear fusion of all the local log-likelihood ratios. The proposed approach clarifies how the BP algorithm works, simplifies the statistical analysis of its behavior, and enables us to develop a performance optimization framework for the BP-based distributed inference systems. Next, we propose a blind learning-adaptation scheme to optimize the system performance when there is no information available a priori describing the statistical behavior of the wireless environment concerned. In addition, we propose a blind threshold adaptation method to guarantee a certain performance level in a BP-based distributed detection system. To clarify the points discussed, we design a novel linear-BP-based distributed spectrum sensing scheme for cognitive radio networks and illustrate the performance improvement obtained, over an existing BP-based detection method, via computer simulations.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Communications
dc.rightsIn Copyright
dc.subject.otherstatistical inference
dc.subject.otherdistributed systems
dc.subject.otherbelief-propagation algorithm
dc.subject.otherlinear data-fusion
dc.subject.otherMarkov random fields
dc.subject.otherspectrum sensing
dc.subject.otherblind signal processing
dc.titleOptimization of Linearized Belief Propagation for Distributed Detection
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202005143201
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange959-973
dc.relation.issn0090-6778
dc.relation.numberinseries2
dc.relation.volume68
dc.type.versionacceptedVersion
dc.rights.copyright© 2020, IEEE
dc.rights.accesslevelopenAccessfi
dc.subject.ysohajautetut järjestelmät
dc.subject.ysoverkkoteoria
dc.subject.ysoalgoritmit
dc.subject.ysosignaalinkäsittely
dc.subject.ysotilastolliset mallit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21082
jyx.subject.urihttp://www.yso.fi/onto/yso/p2543
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p26278
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/TCOMM.2019.2956037
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright