dc.contributor.author | Abdi, Younes | |
dc.contributor.author | Ristaniemi, Tapani | |
dc.date.accessioned | 2020-05-14T10:55:29Z | |
dc.date.available | 2020-05-14T10:55:29Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Abdi, Y., & Ristaniemi, T. (2020). Optimization of Linearized Belief Propagation for Distributed Detection. <i>IEEE Transactions on Communications</i>, <i>68</i>(2), 959-973. <a href="https://doi.org/10.1109/TCOMM.2019.2956037" target="_blank">https://doi.org/10.1109/TCOMM.2019.2956037</a> | |
dc.identifier.other | CONVID_33664738 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/68987 | |
dc.description.abstract | In this paper, we investigate distributed inference schemes, over binary-valued Markov random fields, which are realized by the belief propagation (BP) algorithm. We first show that a decision variable obtained by the BP algorithm in a network of distributed agents can be approximated by a linear fusion of all the local log-likelihood ratios. The proposed approach clarifies how the BP algorithm works, simplifies the statistical analysis of its behavior, and enables us to develop a performance optimization framework for the BP-based distributed inference systems. Next, we propose a blind learning-adaptation scheme to optimize the system performance when there is no information available a priori describing the statistical behavior of the wireless environment concerned. In addition, we propose a blind threshold adaptation method to guarantee a certain performance level in a BP-based distributed detection system. To clarify the points discussed, we design a novel linear-BP-based distributed spectrum sensing scheme for cognitive radio networks and illustrate the performance improvement obtained, over an existing BP-based detection method, via computer simulations. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartofseries | IEEE Transactions on Communications | |
dc.rights | In Copyright | |
dc.subject.other | statistical inference | |
dc.subject.other | distributed systems | |
dc.subject.other | belief-propagation algorithm | |
dc.subject.other | linear data-fusion | |
dc.subject.other | Markov random fields | |
dc.subject.other | spectrum sensing | |
dc.subject.other | blind signal processing | |
dc.title | Optimization of Linearized Belief Propagation for Distributed Detection | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202005143201 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 959-973 | |
dc.relation.issn | 0090-6778 | |
dc.relation.numberinseries | 2 | |
dc.relation.volume | 68 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020, IEEE | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | hajautetut järjestelmät | |
dc.subject.yso | verkkoteoria | |
dc.subject.yso | algoritmit | |
dc.subject.yso | signaalinkäsittely | |
dc.subject.yso | tilastolliset mallit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21082 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2543 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14524 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12266 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26278 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1109/TCOMM.2019.2956037 | |
dc.type.okm | A1 | |