Synthesis of an antiaromatic circulenophane
Tekijät
Päivämäärä
2020Tekijänoikeudet
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
Otherwise unstable antiaromatic compounds can be studied when they are integrated into a bigger π-conjugated system. Cyclooctatetraene (COT) compounds are easy to synthesize and study, but they reside in a non-planar saddle-shaped conformation. Planarized COT, however, is an 8π 8-membered antiaromatic structure. A hetero[8]circulene is one option to overcome the non-planar conformation barrier. The surrounding aromatic π-system in a hetero[8]circulene core assists in creating a smaller bond angle, thus resulting in a planar diazadioxa[8]circulene.
This thesis addresses a synthetic pathway towards having a suitable compound for studying the concept of antiaromaticity in planarized cyclooctatetraenes (COTs). For further research, there are two means of evaluating aromaticity. According to the Nucleus-Independent Chemical Shift (NICS) values obtained by computational chemistry, magnetic current of the COT core can be investigated. Furthermore, the synthesized compound can be analysed using NMR spectroscopy. Antiaromaticity of the hetero[8]circulene can be proven by locating a proton near the COT core so that the chemical shift of the proton changes due to the proximity to the ring current.
To apply this theory, cyclophane-chemistry has been used to create a system in which a circulene substrate bearing a bridge-type linker containing protons is located in its centre. The linker is covalently bonded through the pyrrole nitrogen atoms of the circulene system. Creating this system enables us to study further the antiaromaticity of the circulenophane compound synthesized in this project.
...
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29544]
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Strategies for Exploring Functions from Dynamic Combinatorial Libraries
Jia, Chunman; Qi, Dawei; Zhang, Yucang; Rissanen, Kari; Li, Jianwei (Wiley-VCH Verlag, 2020)Dynamic combinatorial chemistry (DCC) is a powerful approach for creating complex chemical systems, giving access to the studies of complexity and exploration of functionality in synthetic systems. However, compared with ... -
Synthesis, characterization, and reactivity of heavier group 13 and 14 metallylenes and metalloid clusters : small molecule activation and more
Vasko, Petra (University of Jyväskylä, 2015) -
Self-assembly, physico-chemical characterization, biological, virtual screening, and computational approach of novel 2-amino pyridine derivatives
Makhlouf, Jawher; El Bakri, Youness; Saravanan, Kandasamy; Valkonen, Arto; Smirani, Wajda (Elsevier BV, 2023)Two novel compounds, [Zn(SCN)4] (C5H7N2)2 (I) and (C5H7N2)NCS (II), were successfully synthesized and grown at room temperature by slow evaporation. The investigation of compound's properties was occurred using various ... -
Uranocenium : Synthesis, Structure and Chemical Bonding
Guo, Fu-Sheng; Chen, Yan-Cong; Tong, Ming-Liang; Mansikkamäki, Akseli; Layfield, Richard (Wiley - VCH Verlag GmbH & Co. KGaA, 2019)Abstraction of iodide from [(η5‐C5iPr5)2UI] (1) produced the cationic uranium(III) metallocene [(η5‐C5iPr5)2U]+ (2) as a salt of [B(C6F5)4]−. The structure of 2 consists of unsymmetrically bonded cyclopentadienyl ligands ... -
Synthesis of Unexpected Dimethyl 2-(4-Chlorophenyl)-2,3-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate via Hydrolysis/Cycloaddition/Elimination Cascades : Single Crystal X-ray and Chemical Structure Insights
Altowyan, Mezna Saleh; Soliman, Saied M.; Haukka, Matti; Al-Shaalan, Nora H.; Alkharboush, Aminah A.; Barakat, Assem (MDPI AG, 2022)Hydrolysis/[3 + 2] cycloaddition/elimination cascades employed for the synthesis of unexpected tricyclic compound derived from isoquinoline. Reaction of ethylene derivative 1 with the isoquinoline ester iminium ion 2 in ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.