Multi-marginal entropy-transport with repulsive cost
Gerolin, A., Kausamo, A., & Rajala, T. (2020). Multi-marginal entropy-transport with repulsive cost. Calculus of Variations and Partial Differential Equations, 59(3), Article 90. https://doi.org/10.1007/s00526-020-01735-3
Julkaistu sarjassa
Calculus of Variations and Partial Differential EquationsPäivämäärä
2020Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© The Authors 2020
In this paper we study theoretical properties of the entropy-transport functional with repulsive cost functions. We provide sufficient conditions for the existence of a minimizer in a class of metric spaces and prove the Γ-convergence of the entropy-transport functional to a multi-marginal optimal transport problem with a repulsive cost. We point out that our construction can deal with the case when the space X is a domain in Rd, answering a question raised in Benamou et al. (Numer Math 142:33–54, 2019). Finally, we also prove the entropy-regularized version of the Kantorovich duality.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0944-2669Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/35298830
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SA; Akatemiatutkija, SA; Akatemiahanke, SALisätietoja rahoituksesta
The authors acknowledge the support of the Academy of Finland, Projects Nos. 274372, 284511, 312488, and 314789. A.G. also acknowledges funding by the European Research Council under H2020/MSCA-IF “OTmeetsDFT” (Grant ID: 795942). A.K. also wants to thank the Vilho, Yrjö and Kalle Väisälä Foundation for funding.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On deterministic solutions for multi-marginal optimal transport with Coulomb cost
Bindini, Ugo; De Pascale, Luigi; Kausamo, Anna (American Institute of Mathematical Sciences (AIMS), 2022)In this paper we study the three-marginal optimal mass transportation problem for the Coulomb cost on the plane R2. The key question is the optimality of the so-called Seidl map, first disproved by Colombo and Stra. We ... -
Shape optimization utilizing consistent sensitivities
Toivanen, Jukka (University of Jyväskylä, 2010) -
Optimization of the domain in elliptic variational inequalities
Neittaanmäki, Pekka; Sokolowski, J.; Zolesio, J. P. (University of Jyväskylä, 1986) -
On optimal shape design of systems governed by mixed Dirichlet-Signorini boundary value problems
Haslinger, J.; Neittaanmäki, Pekka (University of Jyväskylä, 1983)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.