Näytä suppeat kuvailutiedot

dc.contributor.authorRahkonen, Samuli
dc.contributor.authorKoskinen, Emilia
dc.contributor.authorPölönen, Ilkka
dc.contributor.authorHeinonen, Tuula
dc.contributor.authorYlikomi, Timo
dc.contributor.authorÄyrämö, Sami
dc.contributor.authorEskelinen, Matti A.
dc.date.accessioned2020-04-15T12:25:02Z
dc.date.available2020-04-15T12:25:02Z
dc.date.issued2020
dc.identifier.citationRahkonen, S., Koskinen, E., Pölönen, I., Heinonen, T., Ylikomi, T., Äyrämö, S., & Eskelinen, M. A. (2020). Multilabel segmentation of cancer cell culture on vascular structures with deep neural networks. <i>Journal of Medical Imaging</i>, <i>7</i>(2), Article 024001. <a href="https://doi.org/10.1117/1.JMI.7.2.024001" target="_blank">https://doi.org/10.1117/1.JMI.7.2.024001</a>
dc.identifier.otherCONVID_35196996
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68543
dc.description.abstractNew increasingly complex in vitro cancer cell models are being developed. These new models seem to represent the cell behavior in vivo more accurately and have better physiological relevance than prior models. An efficient testing method for selecting the most optimal drug treatment does not exist to date. One proposed solution to the problem involves isolation of cancer cells from the patients’ cancer tissue, after which they are exposed to potential drugs alone or in combinations to find the most optimal medication. To achieve this goal, methods that can efficiently quantify and analyze changes in tested cell are needed. Our study aimed to detect and segment cells and structures from cancer cell cultures grown on vascular structures in phase-contrast microscope images using U-Net neural networks to enable future drug efficacy assessments. We cultivated prostate carcinoma cell lines PC3 and LNCaP on the top of a matrix containing vascular structures. The cells were imaged with a Cell-IQ phase-contrast microscope. Automatic analysis of microscope images could assess the efficacy of tested drugs. The dataset included 36 RGB images and ground-truth segmentations with mutually not exclusive classes. The used method could distinguish vascular structures, cells, spheroids, and cell matter around spheroids in the test images. Some invasive spikes were also detected, but the method could not distinguish the invasive cells in the test images.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSPIE
dc.relation.ispartofseriesJournal of Medical Imaging
dc.rightsCC BY 4.0
dc.subject.otherneural network
dc.subject.othersegmentation
dc.subject.othercancer
dc.subject.otherin vitro
dc.subject.othermicroscopy
dc.titleMultilabel segmentation of cancer cell culture on vascular structures with deep neural networks
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202004152765
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2329-4302
dc.relation.numberinseries2
dc.relation.volume7
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 The Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber1711/31/2016
dc.subject.ysoin vitro -menetelmä
dc.subject.ysosoluviljely
dc.subject.ysosyöpäsolut
dc.subject.ysokuvantaminen
dc.subject.ysoneuroverkot
dc.subject.ysosegmentointi
dc.subject.ysomikroskopia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21041
jyx.subject.urihttp://www.yso.fi/onto/yso/p9302
jyx.subject.urihttp://www.yso.fi/onto/yso/p23898
jyx.subject.urihttp://www.yso.fi/onto/yso/p3532
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p18246
jyx.subject.urihttp://www.yso.fi/onto/yso/p16290
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1117/1.JMI.7.2.024001
dc.relation.funderTEKESen
dc.relation.funderTEKESfi
jyx.fundingprogramPublic research networked with companies, TEKESen
jyx.fundingprogramElinkeinoelämän kanssa verkottunut tutkimus, TEKESfi
jyx.fundinginformationThe research has been cofunded by University of Jyväskylä, the Finnish Funding Agency for Innovation Tekes (Grant No. 1711/31/2016) and the Foundation of Jane and Aatos Erkko (Grant No. 170015).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0