Näytä suppeat kuvailutiedot

dc.contributor.authorGeldhof, Sarina
dc.contributor.authorCampbell, Paul
dc.contributor.authorCheal, Bradley
dc.contributor.authorde Groote, Ruben
dc.contributor.authorGins, Wouter
dc.contributor.authorMoore, Iain
dc.date.accessioned2020-03-17T05:36:22Z
dc.date.available2020-03-17T05:36:22Z
dc.date.issued2020
dc.identifier.citationGeldhof, S., Campbell, P., Cheal, B., de Groote, R., Gins, W., & Moore, I. (2020). Collinear laser spectroscopy of stable palladium isotopes at the IGISOL facility. <i>Hyperfine Interactions</i>, <i>241</i>(1), Article 41. <a href="https://doi.org/10.1007/s10751-020-01713-3" target="_blank">https://doi.org/10.1007/s10751-020-01713-3</a>
dc.identifier.otherCONVID_34972656
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68198
dc.description.abstractCollinear laser spectroscopy on stable palladium isotopes was performed at the IGISOL facility in Jyväskylä in preparation for an experiment on its neutron-rich isotopes. Five transitions from different initial atomic states were tested, with the goal of finding the most spectroscopically efficient. The observed intensities afforded a comparison with atomic-level population predictions based on charge-exchange calculations. For some transitions hyperfine parameters of 105Pd were measured, which were found to be in good agreement with literature values. A King plot analysis was performed using the measured isotope shifts and known charge radii from literature to determine the atomic field and mass shift factors.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesHyperfine Interactions
dc.rightsCC BY 4.0
dc.subject.othercollinear laser spectroscopy
dc.subject.otherIGISOL
dc.titleCollinear laser spectroscopy of stable palladium isotopes at the IGISOL facility
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202003172422
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0304-3843
dc.relation.numberinseries1
dc.relation.volume241
dc.type.versionpublishedVersion
dc.rights.copyright© The Authors 2020
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber654002
dc.relation.grantnumber654002
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/654002/EU//
dc.subject.ysopalladium
dc.subject.ysospektroskopia
dc.subject.ysoydinfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26929
jyx.subject.urihttp://www.yso.fi/onto/yso/p10176
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s10751-020-01713-3
dc.relation.funderEuropean Commissionen
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramResearch infrastructures, H2020en
jyx.fundingprogramResearch infrastructures, H2020fi
jyx.fundinginformationOpen access funding provided by University of Jyväskylä (JYU). This work has received funding from the European Unions Horizon 2020 research and innovation program under Grants Agreement No. 654002 (ENSAR2). We gratefully acknowledge W. Nörtershäuser for the use of the charge-exchange cell.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0