Show simple item record

dc.contributor.authorTang, T. L.
dc.contributor.authorKay, B. P.
dc.contributor.authorHoffman, C. R.
dc.contributor.authorSchiffer, J. P.
dc.contributor.authorSharp, D. K.
dc.contributor.authorGaffney, L. P.
dc.contributor.authorFreeman, S. J.
dc.contributor.authorMumpower, M. R.
dc.contributor.authorArokiaraj, A.
dc.contributor.authorBaader, E. F.
dc.contributor.authorButler, P. A.
dc.contributor.authorCatford, W. N.
dc.contributor.authorde Angelis, G.
dc.contributor.authorFlavigny, F.
dc.contributor.authorGott, M. D.
dc.contributor.authorGregor, E. T.
dc.contributor.authorKonki, J.
dc.contributor.authorLabiche, M.
dc.contributor.authorLazarus, I. H.
dc.contributor.authorMacGregor, P. T.
dc.contributor.authorMartel, I.
dc.contributor.authorPage, R. D.
dc.contributor.authorPodolyák, Zs.
dc.contributor.authorPoleshchuk, O.
dc.contributor.authorRaabe, R.
dc.contributor.authorRecchia, F.
dc.contributor.authorSmith, J. F.
dc.contributor.authorSzwec, S. V.
dc.contributor.authorYang, J.
dc.date.accessioned2020-03-09T09:23:45Z
dc.date.available2020-03-09T09:23:45Z
dc.date.issued2020
dc.identifier.citationTang, T., Kay, B., Hoffman, C., Schiffer, J., Sharp, D., Gaffney, L., Freeman, S., Mumpower, M., Arokiaraj, A., Baader, E., Butler, P., Catford, W., de Angelis, G., Flavigny, F., Gott, M., Gregor, E., Konki, J., Labiche, M., Lazarus, I., . . . Yang, J. (2020). First Exploration of Neutron Shell Structure below Lead and beyond N=126. <i>Physical Review Letters</i>, <i>124</i>(6), Article 062502. <a href="https://doi.org/10.1103/PhysRevLett.124.062502" target="_blank">https://doi.org/10.1103/PhysRevLett.124.062502</a>
dc.identifier.otherCONVID_34925341
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/68102
dc.description.abstractThe nuclei below lead but with more than 126 neutrons are crucial to an understanding of the astrophysical r process in producing nuclei heavier than A∼190. Despite their importance, the structure and properties of these nuclei remain experimentally untested as they are difficult to produce in nuclear reactions with stable beams. In a first exploration of the shell structure of this region, neutron excitations in 207Hg have been probed using the neutron-adding (d,p) reaction in inverse kinematics. The radioactive beam of 206Hg was delivered to the new ISOLDE Solenoidal Spectrometer at an energy above the Coulomb barrier. The spectroscopy of 207Hg marks a first step in improving our understanding of the relevant structural properties of nuclei involved in a key part of the path of the r process.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review Letters
dc.rightsCC BY 4.0
dc.titleFirst Exploration of Neutron Shell Structure below Lead and beyond N=126
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202003092337
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.relation.issn0031-9007
dc.relation.numberinseries6
dc.relation.volume124
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber654002
dc.relation.grantnumber654002
dc.relation.grantnumber307685
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/654002/EU//
dc.subject.ysoydinfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1103/PhysRevLett.124.062502
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuropean Commissionen
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramResearch infrastructures, H2020fi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramResearch infrastructures, H2020en
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThis material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 (ANL), the UK Science and Technology Facilities Council [Grants No. ST/P004598/1, No. ST/N002563/1, No. ST/M00161X/1 (Liverpool); No. ST/P004423/1 (Manchester); No. ST/P005314/1 (Surrey); No. ST/P005101/1 (West of Scotland); the ISOL-SRS Grant (Daresbury)], the European Union’s Horizon 2020 Framework research and innovation program under Grant Agreement No. 654002 (European Nuclear Science and Applications Research) and the Marie Skłodowska-Curie Grant Agreement No. 665779, and from the Research Foundation Flanders (Belgium) under the Big Science project G0C28.13, and the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 617156. M. R. M. was supported by the U.S. Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, Limited Liability Company, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). S. V. S. was supported by the Academy of Finland (Grant No. 307685). M. R. M. was also supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under Project No. 20190021DR.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0