Näytä suppeat kuvailutiedot

dc.contributor.authorHurst, Hilary M.
dc.contributor.authorGalitski, Victor
dc.contributor.authorHeikkilä, Tero T.
dc.date.accessioned2020-02-25T08:39:08Z
dc.date.available2020-02-25T08:39:08Z
dc.date.issued2020
dc.identifier.citationHurst, H. M., Galitski, V., & Heikkilä, T. T. (2020). Electron-induced massive dynamics of magnetic domain walls. <i>Physical Review B</i>, <i>101</i>(5), Article 054407. <a href="https://doi.org/10.1103/PhysRevB.101.054407" target="_blank">https://doi.org/10.1103/PhysRevB.101.054407</a>
dc.identifier.otherCONVID_34715270
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67944
dc.description.abstractWe study the dynamics of domain walls (DWs) in a metallic, ferromagnetic nanowire, focusing on inertial effects on the DW due to interaction with a conduction electron bath. We develop a Keldysh collective coordinate technique to describe the effect of conduction electrons on rigid magnetic structures. The effective Lagrangian and Langevin equations of motion for a DW are derived microscopically, including the full response kernel which is nonlocal in time. The DW dynamics is described by two collective degrees of freedom: position and tilt angle. The coupled Langevin equations therefore involve two correlated noise sources, leading to a generalized fluctuation-dissipation theorem (FDT). The DW response kernel due to electrons contains two parts: one related to dissipation via FDT and another reactive part. We prove that the latter term leads to a mass for both degrees of freedom, even though the intrinsic bare mass is zero. The electron-induced mass is present even in a clean system without pinning or specifically engineered potentials. The resulting equations of motion contain rich dynamical solutions and point toward a way to control domain wall motion in metals via the electronic system properties. We discuss two observable consequences of the mass, hysteresis in the DW dynamics, and resonant response to ac current.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review B
dc.rightsIn Copyright
dc.titleElectron-induced massive dynamics of magnetic domain walls
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202002252172
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2469-9950
dc.relation.numberinseries5
dc.relation.volume101
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber317118
dc.subject.ysonanorakenteet
dc.subject.ysomagneettiset ominaisuudet
dc.subject.ysosähkömagneettiset ilmiöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
jyx.subject.urihttp://www.yso.fi/onto/yso/p597
jyx.subject.urihttp://www.yso.fi/onto/yso/p4351
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1103/PhysRevB.101.054407
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationH.M.H. acknowledges the support of an NRC Research Assistantship at NIST. V.G. was supported by DOE-BES (DESC0001911) and the Simons Foundation. The work of T.T.H. was supported by the Academy of Finland (Project No. 317118). T.T.H. is also grateful to the Physics Frontier Center at the JQI, where this work was conceived, for hospitality.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright