Ankle and knee extensor muscle effort during locomotion in young and older athletes : Implications for understanding age-related locomotor decline
Kulmala, J.-P., Korhonen, M. T., Ruggiero, L., Kuitunen, S., Suominen, H., Heinonen, A., Mikkola, A., & Avela, J. (2020). Ankle and knee extensor muscle effort during locomotion in young and older athletes : Implications for understanding age-related locomotor decline. Scientific Reports, 10, Article 2801. https://doi.org/10.1038/s41598-020-59676-y
Julkaistu sarjassa
Scientific ReportsTekijät
Päivämäärä
2020Oppiaine
Gerontologia ja kansanterveysBiomekaniikkaFysioterapiaGerontology and Public HealthBiomechanicsPhysiotherapyTekijänoikeudet
© The Author(s) 2020
Age-related reduction in muscle force generation capacity is similarly evident across different lower limb muscle groups, yet decline in locomotor performance with age has been shown to depend primarily on reduced ankle extensor muscle function. To better understand why ageing has the largest detrimental effect on ankle joint function during locomotion, we examined maximal ankle and knee extensor force development during a two-leg hopping test in older and young men, and used these forces as a reference to calculate relative operating efforts for the knee and ankle extensors as participants walked, ran and sprinted. We found that, across locomotion modes in both age groups, ankle extensors operated at a greater relative effort compared to knee extensors; however, slightly less pronounced differences between ankle and knee extensor muscle efforts were present among older men, mainly due to a reduction in the ankle extensor force generation during locomotion modes. We consider these findings as evidence that reduced ankle push-off function in older age is driven by a tendency to keep ankle extensor effort during locomotion lower than it would otherwise be, which, in turn, may be an important self-optimisation strategy to prevent locomotor-induced fatigue of ankle extensor muscles.
...
Julkaisija
Nature Publishing GroupISSN Hae Julkaisufoorumista
2045-2322Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/34677098
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Liikuntatieteiden tiedekunta [3139]
Lisätietoja rahoituksesta
This work was supported by the Academy of Finland (grants 308364 and 138574) and the Finnish Ministry of Education and Culture (grant 250683).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The effects of locomotor pattern diversity and ageing on the lower limb joint mechanics and loading during human walking and running
Kulmala, Juha-Pekka (University of Jyväskylä, 2015) -
Age-Related Declines in Lower Limb Muscle Function are Similar in Power and Endurance Athletes of Both Sexes : A Longitudinal Study of Master Athletes
Ireland, Alex; Mittag, Uwe; Degens, Hans; Felsenberg, Dieter; Heinonen, Ari; Koltai, Erika; Korhonen, Marko T.; McPhee, Jamie S.; Mekjavic, Igor; Pisot, Rado; Rawer, Rainer; Radak, Zsolt; Simunic, Bostjan; Suominen, Harri; Rittweger, Jörn (Springer, 2022)The age-related decline in muscle function, particularly muscle power, is associated with increased risk of important clinical outcomes. Physical activity is an important determinant of muscle function, and different types ... -
Comparing Surface and Fine-wire Electromyography Activity of Lower Leg Muscles at Different Walking Speeds
Péter, Annamária; Andersson, Eva; Hegyi, András; Finni, Taija; Tarassova, Olga; Cronin, Neil; Grundström, Helen; Arndt, Anton (Frontiers Research Foundation, 2019)Ankle plantar flexor muscles are active in the stance phase of walking to propel the body forward. Increasing walking speed requires increased plantar flexor excitation, frequently assessed using surface electromyography ... -
Individual Region- and Muscle-specific Hamstring Activity at Different Running Speeds
Hegyi, Andras; Goncalves, Basilio; Finni Juutinen, Taija; Cronin, Neil (Lippincott Williams & Wilkins, 2019)Introduction: Hamstring strain injuries typically occur in the proximal biceps femoris long head (BFlh) at high running speeds. Strain magnitude seems to be the primary determinant of strain injury, and may be regulated ... -
Distinct muscle-tendon interaction during running at different speeds and in different loading conditions
Werkhausen, Amelie; Cronin, Neil; Albracht, Kirsten; Bojsen-Møller, Jens; Seynnes, Olivier R. (American Physiological Society, 2019)The interaction between the Achilles tendon and the triceps surae muscles seems to be modulated differently with various task configurations. Here we tested the hypothesis that the increased forces and ankle joint work ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.