Näytä suppeat kuvailutiedot

dc.contributor.authorButler, P. A.
dc.contributor.authorGaffney, L. P.
dc.contributor.authorSpagnoletti, P.
dc.contributor.authorAbrahams, K.
dc.contributor.authorBowry, M.
dc.contributor.authorCederkäll, J.
dc.contributor.authorde Angelis, G.
dc.contributor.authorDe Witte, H.
dc.contributor.authorGarrett, P. E.
dc.contributor.authorGoldkuhle, A.
dc.contributor.authorHenrich, C.
dc.contributor.authorIllana, A.
dc.contributor.authorJohnston, K.
dc.contributor.authorJoss, D. T.
dc.contributor.authorKeatings, J. M.
dc.contributor.authorKelly, N. A.
dc.contributor.authorKomorowska, M.
dc.contributor.authorKonki, J.
dc.contributor.authorKröll, T.
dc.contributor.authorLozano, M.
dc.contributor.authorNara Singh, B. S.
dc.contributor.authorO'Donnell, D.
dc.contributor.authorOjala, J.
dc.contributor.authorPage, R. D.
dc.contributor.authorPedersen, L. G.
dc.contributor.authorRaison, C.
dc.contributor.authorReiter, P.
dc.contributor.authorRodriguez, J. A.
dc.contributor.authorRosiak, D.
dc.contributor.authorRothe, S.
dc.contributor.authorScheck, M.
dc.contributor.authorSeidlitz, M.
dc.contributor.authorShneidman, T. M.
dc.contributor.authorSiebeck, B.
dc.contributor.authorSinclair, J.
dc.contributor.authorSmith, J. F.
dc.contributor.authorStryjczyk, M.
dc.contributor.authorVan Duppen, P.
dc.contributor.authorVinals, S.
dc.contributor.authorVirtanen, V.
dc.contributor.authorWarr, N.
dc.contributor.authorWrzosek-Lipska, K.
dc.contributor.authorZielinska, M.
dc.date.accessioned2020-02-05T08:02:42Z
dc.date.available2020-02-05T08:02:42Z
dc.date.issued2020
dc.identifier.citationButler, P. A., Gaffney, L. P., Spagnoletti, P., Abrahams, K., Bowry, M., Cederkäll, J., de Angelis, G., De Witte, H., Garrett, P. E., Goldkuhle, A., Henrich, C., Illana, A., Johnston, K., Joss, D. T., Keatings, J. M., Kelly, N. A., Komorowska, M., Konki, J., Kröll, T., . . . Zielinska, M. (2020). Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive 222Ra and 228Ra Beams. <i>Physical Review Letters</i>, <i>124</i>(4), Article 042503. <a href="https://doi.org/10.1103/PhysRevLett.124.042503" target="_blank">https://doi.org/10.1103/PhysRevLett.124.042503</a>
dc.identifier.otherCONVID_34516187
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67743
dc.description.abstractThere is sparse direct experimental evidence that atomic nuclei can exhibit stable “pear” shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in 222,228Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing 222Ra as pear shaped with stable octupole deformation, while 228Ra behaves like an octupole vibrator.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review Letters
dc.rightsCC BY 4.0
dc.subject.othercollective levels
dc.subject.otherelectromagnetic transitions
dc.subject.othernuclear structure and decays
dc.titleEvolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive 222Ra and 228Ra Beams
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202002051991
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0031-9007
dc.relation.numberinseries4
dc.relation.volume124
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber307685
dc.subject.ysoydinfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1103/PhysRevLett.124.042503
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work was supported by the following Research Councils and Grants: Science and Technology Facilities Council (UK) Grants No. ST/P004598/1, No. ST/L005808/1, No. ST/ R004056/1; Federal Ministry of Education and Research (Germany) Grants No. 05P18RDCIA, No. 05P15PKCIA, and No. 05P18PKCIA and the “Verbundprojekt 05P2018”; National Science Centre (Poland) Grant No. 2015/18/M/ ST2/00523; European Union’s Horizon 2020 Framework research and innovation programme 654002 (ENSAR2); Marie Skłodowska-Curie COFUND Grant (EU-CERN) 665779; Research Foundation Flanders and IAP Belgian Science Policy Office BriX network P7/12 (Belgium); GOA/2015/010 (BOF KU Leuven); RFBR (Russia) Grant No. 17-52-12015; and the Academy of Finland (Finland) Grant No. 307685.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0