Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive 222Ra and 228Ra Beams
dc.contributor.author | Butler, P. A. | |
dc.contributor.author | Gaffney, L. P. | |
dc.contributor.author | Spagnoletti, P. | |
dc.contributor.author | Abrahams, K. | |
dc.contributor.author | Bowry, M. | |
dc.contributor.author | Cederkäll, J. | |
dc.contributor.author | de Angelis, G. | |
dc.contributor.author | De Witte, H. | |
dc.contributor.author | Garrett, P. E. | |
dc.contributor.author | Goldkuhle, A. | |
dc.contributor.author | Henrich, C. | |
dc.contributor.author | Illana, A. | |
dc.contributor.author | Johnston, K. | |
dc.contributor.author | Joss, D. T. | |
dc.contributor.author | Keatings, J. M. | |
dc.contributor.author | Kelly, N. A. | |
dc.contributor.author | Komorowska, M. | |
dc.contributor.author | Konki, J. | |
dc.contributor.author | Kröll, T. | |
dc.contributor.author | Lozano, M. | |
dc.contributor.author | Nara Singh, B. S. | |
dc.contributor.author | O'Donnell, D. | |
dc.contributor.author | Ojala, J. | |
dc.contributor.author | Page, R. D. | |
dc.contributor.author | Pedersen, L. G. | |
dc.contributor.author | Raison, C. | |
dc.contributor.author | Reiter, P. | |
dc.contributor.author | Rodriguez, J. A. | |
dc.contributor.author | Rosiak, D. | |
dc.contributor.author | Rothe, S. | |
dc.contributor.author | Scheck, M. | |
dc.contributor.author | Seidlitz, M. | |
dc.contributor.author | Shneidman, T. M. | |
dc.contributor.author | Siebeck, B. | |
dc.contributor.author | Sinclair, J. | |
dc.contributor.author | Smith, J. F. | |
dc.contributor.author | Stryjczyk, M. | |
dc.contributor.author | Van Duppen, P. | |
dc.contributor.author | Vinals, S. | |
dc.contributor.author | Virtanen, V. | |
dc.contributor.author | Warr, N. | |
dc.contributor.author | Wrzosek-Lipska, K. | |
dc.contributor.author | Zielinska, M. | |
dc.date.accessioned | 2020-02-05T08:02:42Z | |
dc.date.available | 2020-02-05T08:02:42Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Butler, P. A., Gaffney, L. P., Spagnoletti, P., Abrahams, K., Bowry, M., Cederkäll, J., de Angelis, G., De Witte, H., Garrett, P. E., Goldkuhle, A., Henrich, C., Illana, A., Johnston, K., Joss, D. T., Keatings, J. M., Kelly, N. A., Komorowska, M., Konki, J., Kröll, T., . . . Zielinska, M. (2020). Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive 222Ra and 228Ra Beams. <i>Physical Review Letters</i>, <i>124</i>(4), Article 042503. <a href="https://doi.org/10.1103/PhysRevLett.124.042503" target="_blank">https://doi.org/10.1103/PhysRevLett.124.042503</a> | |
dc.identifier.other | CONVID_34516187 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/67743 | |
dc.description.abstract | There is sparse direct experimental evidence that atomic nuclei can exhibit stable “pear” shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in 222,228Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing 222Ra as pear shaped with stable octupole deformation, while 228Ra behaves like an octupole vibrator. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.ispartofseries | Physical Review Letters | |
dc.rights | CC BY 4.0 | |
dc.subject.other | collective levels | |
dc.subject.other | electromagnetic transitions | |
dc.subject.other | nuclear structure and decays | |
dc.title | Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive 222Ra and 228Ra Beams | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202002051991 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.oppiaine | Kiihdytinlaboratorio | fi |
dc.contributor.oppiaine | Accelerator Laboratory | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0031-9007 | |
dc.relation.numberinseries | 4 | |
dc.relation.volume | 124 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2020 American Physical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 307685 | |
dc.subject.yso | ydinfysiikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14759 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1103/PhysRevLett.124.042503 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This work was supported by the following Research Councils and Grants: Science and Technology Facilities Council (UK) Grants No. ST/P004598/1, No. ST/L005808/1, No. ST/ R004056/1; Federal Ministry of Education and Research (Germany) Grants No. 05P18RDCIA, No. 05P15PKCIA, and No. 05P18PKCIA and the “Verbundprojekt 05P2018”; National Science Centre (Poland) Grant No. 2015/18/M/ ST2/00523; European Union’s Horizon 2020 Framework research and innovation programme 654002 (ENSAR2); Marie Skłodowska-Curie COFUND Grant (EU-CERN) 665779; Research Foundation Flanders and IAP Belgian Science Policy Office BriX network P7/12 (Belgium); GOA/2015/010 (BOF KU Leuven); RFBR (Russia) Grant No. 17-52-12015; and the Academy of Finland (Finland) Grant No. 307685. | |
dc.type.okm | A1 |