On modeling multivariate abundance data with generalized linear latent variable models
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2020Tekijänoikeudet
© The Author & University of Jyväskylä
The multivariate abundance data consist typically of multiple, correlated species encountered at a set of sites, together with records of additional covariates. When analysing such data, model-based approaches have been shown to outperform classical algorithmic-based dimension reduction methods. In this thesis we con-sider generalized linear latent variable models, which offer a general framework for the analysis of multivariate abundance data. In order to make the models more attractive among practitioners, new computationally efficient algorithms for the parameter estimation are developed by applying closed form approxima-tion methods, the variational approximation method and the Laplace approxima-tion method, for the marginal likelihood and by utilizing automatic differentia-tion tools when implementing the algorithms. The accuracy and computational efficiency of the methods are investigated and compared to existing methods through extensive simulation studies. The developed algorithms and additional tools implemented for model diagnosis, visualization and statistical inference are collected in R package gllvm. Several examples are provided to illustrate the use of the generalized linear latent variable models in ordination and when studying the between-species correlations and the effects of environmental variables, trait variables and their interactions on ecological communities.
...
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-8062-7ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Niku, J., Warton, D. I., Hui, F. K. C., & Taskinen, S. (2017). Generalized linear latent variable models for multivariate count and biomass data in ecology. Journal of Agricultural, Biological, and Environmental Statistics, 22 (4), 498-522. DOI: 10.1007/s13253-017-0304-7
- Artikkeli II: Niku, J., Brooks, W., Herliansyah, R., Hui, F. K. C., Taskinen, S., & Warton, D. I. (2019). Efficient estimation of generalized linear latent variable models. PLoS ONE, 14 (5), e0216129. DOI: 10.1371/journal.pone.0216129
- Artikkeli III: Niku, J., Hui, F. K., Taskinen, S. and Warton, D. I. (2020). Analysing environmental-trait interactions in ecological communities with fourth-corner latent variable models. Submitted.
- Artikkeli IV: Niku, Jenni; Hui, Francis K.C.; Taskinen, Sara; Warton, David I. (2019). gllvm : Fast analysis of multivariate abundance data with generalized linear latent variable models in R. Methods in Ecology and Evolution, 10 (12), 2173-2182. DOI: 10.1111/2041-210X.13303. JYX: jyx.jyu.fi/handle/123456789/65596.
Asiasanat
tilastolliset mallit monimuuttujamenetelmät tilastomenetelmät lineaariset mallit approksimointi ekologia eliöyhteisöt biodiversiteetti community analysis ecological data fourth-corner models generalized linear models joint modeling Laplace approximation latent variables multivariate analysis ordination species interactions variational approximation
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [852]
- Väitöskirjat [3580]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Analyzing environmental‐trait interactions in ecological communities with fourth‐corner latent variable models
Niku, Jenni; Hui, Francis K. C.; Taskinen, Sara; Warton, David I. (John Wiley & Sons, 2021)In ecological community studies it is often of interest to study the effect of species related trait variables on abundances or presence-absences. Specifically, the interest may lay in the interactions between environmental ... -
gllvm : Fast analysis of multivariate abundance data with generalized linear latent variable models in R
Niku, Jenni; Hui, Francis K.C.; Taskinen, Sara; Warton, David I. (Wiley, 2019)1.There has been rapid development in tools for multivariate analysis based on fully specified statistical models or “joint models”. One approach attracting a lot of attention is generalized linear latent variable models ... -
Variational Approximations for Generalized Linear Latent Variable Models
Hui, Francis K. C.; Warton, David I.; Ormerod, John T.; Haapaniemi, Viivi; Taskinen, Sara (American Statistical Association, 2017)Generalized linear latent variable models (GLLVMs) are a powerful class of models for understanding the relationships among multiple, correlated responses. Estimation, however, presents a major challenge, as the marginal ... -
Fitting Generalized Linear Latent Variable Models using the method of Extended Variational Approximation
Korhonen, Pekka (2020)Yhteisöekologian alalla tutkijat ovat usein kiinnostuneita yhden tai useamman kasvi- tai eläinlajin välisistä esiintyvyyssuhteista eri mittauspaikoilla tai ekosysteemeissä. Tämänkaltaiset tutkimuskysymykset johtavat ... -
Fast and universal estimation of latent variable models using extended variational approximations
Korhonen, Pekka; Hui, Francis K. C.; Niku, Jenni; Taskinen, Sara (Springer, 2023)Generalized linear latent variable models (GLLVMs) are a class of methods for analyzing multi-response data which has gained considerable popularity in recent years, e.g., in the analysis of multivariate abundance data in ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.