Näytä suppeat kuvailutiedot

dc.contributor.authorSun, Cunfa
dc.contributor.authorMammen, Nisha
dc.contributor.authorKaappa, Sami
dc.contributor.authorYuan, Peng
dc.contributor.authorDeng, Guocheng
dc.contributor.authorZhao, Chaowei
dc.contributor.authorYan, Juanzhu
dc.contributor.authorMalola, Sami
dc.contributor.authorHonkala, Karoliina
dc.contributor.authorHäkkinen, Hannu
dc.contributor.authorTeo, Boon K.
dc.contributor.authorZheng, Nanfeng
dc.date.accessioned2020-02-03T09:12:03Z
dc.date.available2020-02-03T09:12:03Z
dc.date.issued2019
dc.identifier.citationSun, C., Mammen, N., Kaappa, S., Yuan, P., Deng, G., Zhao, C., Yan, J., Malola, S., Honkala, K., Häkkinen, H., Teo, B. K., & Zheng, N. (2019). Atomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions. <i>ACS Nano</i>, <i>13</i>(5), 5975-5986. <a href="https://doi.org/10.1021/acsnano.9b02052" target="_blank">https://doi.org/10.1021/acsnano.9b02052</a>
dc.identifier.otherCONVID_31232290
dc.identifier.otherTUTKAID_81765
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67697
dc.description.abstractCopper-hydrides are known catalysts for several technologically important reactions such as hydrogenation of CO, hydroamination of alkenes and alkynes, and chemoselective hydrogenation of unsaturated ketones to unsaturated alcohols. Stabilizing copper-based particles by ligand chemistry to nanometer scale is an appealing route to make active catalysts with optimized material economy; however, it has been long believed that the ligand-metal interface, particularly if sulfur-containing thiols are used as stabilizing agent, may poison the catalyst. We report here a discovery of an ambient-stable thiolate-protected copper-hydride nanocluster [Cu25H10(SPhCl2)18]3- that readily catalyzes hydrogenation of ketones to alcohols in mild conditions. A full experimental and theoretical characterization of its atomic and electronic structure shows that the 10 hydrides are instrumental for the stability of the nanocluster and are in an active role being continuously consumed and replenished in the hydrogenation reaction. Density functional theory computations suggest, backed up by the experimental evidence, that the hydrogenation takes place only around a single site of the 10 hydride locations, rendering the [Cu25H10(SPhCl2)18]3- one of the first nanocatalysts whose structure and catalytic functions are characterized fully to atomic precision. Understanding of a working catalyst at the atomistic level helps to optimize its properties and provides fundamental insights into the controversial issue of how a stable, ligand-passivated, metal-containing nanocluster can be at the same time an active catalyst.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesACS Nano
dc.rightsCC BY 4.0
dc.subject.othercatalytic hydrogenation
dc.subject.otherCu nanocluster
dc.subject.otherhydride
dc.subject.othersingle-site catalyst
dc.subject.otherthiolate
dc.titleAtomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202002031947
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2020-02-03T04:15:28Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange5975-5986
dc.relation.issn1936-0851
dc.relation.numberinseries5
dc.relation.volume13
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 American Chemical Society
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber294217
dc.relation.grantnumber277222
dc.relation.grantnumber319208
dc.subject.ysokatalyytit
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysohydridit
dc.subject.ysonanohiukkaset
dc.subject.ysokupari
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15480
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p15466
jyx.subject.urihttp://www.yso.fi/onto/yso/p23451
jyx.subject.urihttp://www.yso.fi/onto/yso/p19074
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acsnano.9b02052
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundinginformationThe experimental work was supported by the National Key R&D Program of China (2017YFA0207302) and the National Natural Science Foundation of China (21731005, 21420102001, 21801212, and 21721001). The computational work at University of Jyvaskylä̈ was supported by the Academy of Finland [Grant Nos. 294217 (H.H.), 319208 (H.H.), 277222 (K.H.), and H.H.’s Academy Professorship]. H.H. acknowledges support from China’s National Innovation and Intelligence Introduction Base visitor program. S.K. thanks the Vaisälä̈ Foundation for a Ph.D. study grant. The computations were made at the CSC center in Espoo, Finland. We thank L. Feng from High-Field Nuclear Magnetic Resonance Research Center (Xiamen University) for the help in the NMR study.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0