dc.contributor.author | Sun, Cunfa | |
dc.contributor.author | Mammen, Nisha | |
dc.contributor.author | Kaappa, Sami | |
dc.contributor.author | Yuan, Peng | |
dc.contributor.author | Deng, Guocheng | |
dc.contributor.author | Zhao, Chaowei | |
dc.contributor.author | Yan, Juanzhu | |
dc.contributor.author | Malola, Sami | |
dc.contributor.author | Honkala, Karoliina | |
dc.contributor.author | Häkkinen, Hannu | |
dc.contributor.author | Teo, Boon K. | |
dc.contributor.author | Zheng, Nanfeng | |
dc.date.accessioned | 2020-02-03T09:12:03Z | |
dc.date.available | 2020-02-03T09:12:03Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Sun, C., Mammen, N., Kaappa, S., Yuan, P., Deng, G., Zhao, C., Yan, J., Malola, S., Honkala, K., Häkkinen, H., Teo, B. K., & Zheng, N. (2019). Atomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions. <i>ACS Nano</i>, <i>13</i>(5), 5975-5986. <a href="https://doi.org/10.1021/acsnano.9b02052" target="_blank">https://doi.org/10.1021/acsnano.9b02052</a> | |
dc.identifier.other | CONVID_31232290 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/67697 | |
dc.description.abstract | Copper-hydrides are known catalysts for several technologically important reactions such as hydrogenation of CO, hydroamination of alkenes and alkynes, and chemoselective hydrogenation of unsaturated ketones to unsaturated alcohols. Stabilizing copper-based particles by ligand chemistry to nanometer scale is an appealing route to make active catalysts with optimized material economy; however, it has been long believed that the ligand-metal interface, particularly if sulfur-containing thiols are used as stabilizing agent, may poison the catalyst. We report here a discovery of an ambient-stable thiolate-protected copper-hydride nanocluster [Cu25H10(SPhCl2)18]3- that readily catalyzes hydrogenation of ketones to alcohols in mild conditions. A full experimental and theoretical characterization of its atomic and electronic structure shows that the 10 hydrides are instrumental for the stability of the nanocluster and are in an active role being continuously consumed and replenished in the hydrogenation reaction. Density functional theory computations suggest, backed up by the experimental evidence, that the hydrogenation takes place only around a single site of the 10 hydride locations, rendering the [Cu25H10(SPhCl2)18]3- one of the first nanocatalysts whose structure and catalytic functions are characterized fully to atomic precision. Understanding of a working catalyst at the atomistic level helps to optimize its properties and provides fundamental insights into the controversial issue of how a stable, ligand-passivated, metal-containing nanocluster can be at the same time an active catalyst. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society | |
dc.relation.ispartofseries | ACS Nano | |
dc.rights | CC BY 4.0 | |
dc.subject.other | catalytic hydrogenation | |
dc.subject.other | Cu nanocluster | |
dc.subject.other | hydride | |
dc.subject.other | single-site catalyst | |
dc.subject.other | thiolate | |
dc.title | Atomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202002031947 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2020-02-03T04:15:28Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 5975-5986 | |
dc.relation.issn | 1936-0851 | |
dc.relation.numberinseries | 5 | |
dc.relation.volume | 13 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2019 American Chemical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 294217 | |
dc.relation.grantnumber | 277222 | |
dc.relation.grantnumber | 319208 | |
dc.subject.yso | katalyytit | |
dc.subject.yso | tiheysfunktionaaliteoria | |
dc.subject.yso | hydridit | |
dc.subject.yso | nanohiukkaset | |
dc.subject.yso | kupari | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15480 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28852 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15466 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p23451 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19074 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1021/acsnano.9b02052 | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
jyx.fundingprogram | Akatemiaprofessorin tutkimuskulut, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Akatemiaprofessorin tutkimuskulut, SA | fi |
jyx.fundingprogram | Research costs of Academy Professor, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Research costs of Academy Professor, AoF | en |
jyx.fundinginformation | The experimental work was supported by the National Key R&D Program of China (2017YFA0207302) and the National Natural Science Foundation of China (21731005, 21420102001, 21801212, and 21721001). The computational work at University of Jyvaskylä̈ was supported by the Academy of Finland [Grant Nos. 294217 (H.H.), 319208 (H.H.), 277222 (K.H.), and H.H.’s Academy Professorship]. H.H. acknowledges support from China’s National Innovation and Intelligence Introduction Base visitor program. S.K. thanks the Vaisälä̈ Foundation for a Ph.D. study grant. The computations were made at the CSC center in Espoo, Finland. We thank L. Feng from High-Field Nuclear Magnetic Resonance Research Center (Xiamen University) for the help in the NMR study. | |
dc.type.okm | A1 | |