Cell state prediction through distributed estimation of transmit power
Asghar, M. Z., Azhar, F., Nauman, M., Ali, N., Maqbool, M., Ilyas, M. S., & Baig, M. M. (2019). Cell state prediction through distributed estimation of transmit power. In O. Galinina, S. Andreev, S. Balandin, & Y. Koucheryavy (Eds.), NEW2AN 2019, ruSMART 2019 : Internet of Things, Smart Spaces, and Next Generation Networks and Systems : Proceedings of the 19th International Conference on Next Generation Wired/Wireless Networking, and 12th Conference on Internet of Things and Smart Spaces (pp. 365-376). Springer. Lecture Notes in Computer Science, 11660. https://doi.org/10.1007/978-3-030-30859-9_31
Julkaistu sarjassa
Lecture Notes in Computer ScienceTekijät
Päivämäärä
2019Tekijänoikeudet
© Springer Nature Switzerland AG 2019
Determining the state of each cell, for instance, cell outages, in a densely deployed cellular network is a difficult problem. Several prior studies have used minimization of drive test (MDT) reports to detect cell outages. In this paper, we propose a two step process. First, using the MDT reports, we estimate the serving base station’s transmit power for each user. Second, we learn summary statistics of estimated transmit power for various networks states and use these to classify the network state on test data. Our approach is able to achieve an accuracy of 96% on an NS-3 simulation dataset. Decision tree, random forest and SVM classifiers were able to achieve a classification accuracy of 72.3%, 76.52% and 77.48%, respectively .
Julkaisija
SpringerEmojulkaisun ISBN
978-3-030-30858-2Konferenssi
International Conference on Next Generation Wired/Wireless Advanced Networks and SystemsKuuluu julkaisuun
NEW2AN 2019, ruSMART 2019 : Internet of Things, Smart Spaces, and Next Generation Networks and Systems : Proceedings of the 19th International Conference on Next Generation Wired/Wireless Networking, and 12th Conference on Internet of Things and Smart SpacesISSN Hae Julkaisufoorumista
0302-9743Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/32935189
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Detecting cellular network anomalies using the knowledge discovery process
Chernov, Sergey (University of Jyväskylä, 2015)Analytical companies unanimously forecast the exponential growth of mobile traffic consumption over the next five years. The densification of a network structure with small cells is regarded as a key solution to meet growing ... -
On Attacking Future 5G Networks with Adversarial Examples : Survey
Zolotukhin, Mikhail; Zhang, Di; Hämäläinen, Timo; Miraghaei, Parsa (MDPI AG, 2023)The introduction of 5G technology along with the exponential growth in connected devices is expected to cause a challenge for the efficient and reliable network resource allocation. Network providers are now required to ... -
Advanced voice and data solutions for evolution of cellular network system
Chen, Tao (University of Jyväskylä, 2014) -
On Assessing Vulnerabilities of the 5G Networks to Adversarial Examples
Zolotukhin, Mikhail; Miraghaie, Parsa; Zhang, Di; Hämäläinen, Timo (Institute of Electrical and Electronics Engineers (IEEE), 2022)The use of artificial intelligence and machine learning is recognized as the key enabler for 5G mobile networks which would allow service providers to tackle the network complexity and ensure security, reliability and ... -
Toward Multi-Connectivity in Beyond 5G Non-Terrestrial Networks : Challenges and Possible Solutions
Majamaa, Mikko (Institute of Electrical and Electronics Engineers (IEEE), 2024)Non-terrestrial networks (NTNs) will complement terrestrial networks (TNs) in 5G and beyond, which can be attributed to recent deployment and standardization activities. Maximizing the efficiency of NTN communications is ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.