Show simple item record

dc.contributor.authorRepin, Sergey
dc.contributor.editorChetverushkin, B. N.
dc.contributor.editorFitzgibbon, W.
dc.contributor.editorKuznetsov, Y.A.
dc.contributor.editorNeittaanmäki, Pekka
dc.contributor.editorPeriaux, Jacques
dc.contributor.editorPironneau, O.
dc.date.accessioned2020-01-07T14:58:43Z
dc.date.available2020-07-20T21:35:09Z
dc.date.issued2019
dc.identifier.citationRepin, S. (2019). Poincaré Type Inequalities for Vector Functions with Zero Mean Normal Traces on the Boundary and Applications to Interpolation Methods. In B. N. Chetverushkin, W. Fitzgibbon, Y. Kuznetsov, P. Neittaanmäki, J. Periaux, & O. Pironneau (Eds.), <i>Contributions to Partial Differential Equations and Applications</i> (pp. 411-432). Springer. Computational Methods in Applied Sciences, 47. <a href="https://doi.org/10.1007/978-3-319-78325-3_22" target="_blank">https://doi.org/10.1007/978-3-319-78325-3_22</a>
dc.identifier.otherCONVID_28186004
dc.identifier.otherTUTKAID_78391
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67141
dc.description.abstractWe consider inequalities of the Poincaré–Steklov type for subspaces of H1 -functions defined in a bounded domain Ω∈Rd with Lipschitz boundary ∂Ω . For scalar valued functions, the subspaces are defined by zero mean condition on ∂Ω or on a part of ∂Ω having positive d−1 measure. For vector valued functions, zero mean conditions are applied to normal components on plane faces of ∂Ω (or to averaged normal components on curvilinear faces). We find explicit and simply computable bounds of constants in the respective Poincaré type inequalities for domains typically used in finite element methods (triangles, quadrilaterals, tetrahedrons, prisms, pyramids, and domains composed of them). The second part of the paper discusses applications of the estimates to interpolation of scalar and vector valued functions on macrocells and on meshes with non-overlapping and overlapping cells.fi
dc.format.extent452
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofContributions to Partial Differential Equations and Applications
dc.relation.ispartofseriesComputational Methods in Applied Sciences
dc.rightsIn Copyright
dc.subject.otherPoincaré type inequalities
dc.subject.otherinterpolation of functions
dc.subject.otherestimates of constants in functional inequalities
dc.titlePoincaré Type Inequalities for Vector Functions with Zero Mean Normal Traces on the Boundary and Applications to Interpolation Methods
dc.typebookPart
dc.identifier.urnURN:NBN:fi:jyu-202001071071
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.date.updated2020-01-07T13:15:18Z
dc.relation.isbn978-3-319-78324-6
dc.description.reviewstatuspeerReviewed
dc.format.pagerange411-432
dc.relation.issn1871-3033
dc.relation.numberinseries47
dc.type.versionacceptedVersion
dc.rights.copyright© Springer International Publishing AG, part of Springer Nature 2019
dc.rights.accesslevelopenAccessfi
dc.subject.ysointerpolointi
dc.subject.ysofunktiot
dc.subject.ysovektorit (matematiikka)
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14376
jyx.subject.urihttp://www.yso.fi/onto/yso/p7097
jyx.subject.urihttp://www.yso.fi/onto/yso/p12298
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-319-78325-3_22


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright