Show simple item record

dc.contributor.authorKansanaho, Jarno
dc.contributor.authorKärkkäinen, Tommi
dc.date.accessioned2019-12-16T10:46:50Z
dc.date.available2019-12-16T10:46:50Z
dc.date.issued2019
dc.identifier.citationKansanaho, J., & Kärkkäinen, T. (2019). Hybrid vibration signal monitoring approach for rolling element bearings. In <i>ESANN 2019 : Proceedings of the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning</i> (pp. 49-54). ESANN. <a href="https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-90.pdf" target="_blank">https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-90.pdf</a>
dc.identifier.otherCONVID_32124806
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66815
dc.description.abstractNew approach to identify different lifetime stages of rolling element bearings, to improve early bearing fault detection, is presented. We extract characteristic features from vibration signals generated by rolling element bearings. This data is first pre-labelled with an unsupervised clustering method. Then, supervised methods are used to improve the labelling. Moreover, we assess feature importance with each classifier. From the practical point of view, the classifiers are compared on how early emergence of a bearing fault is being suggested. The results show that all of the classifiers are usable for bearing fault detection and the importance of the features was consistent.en
dc.format.extent696
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherESANN
dc.relation.ispartofESANN 2019 : Proceedings of the 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
dc.relation.urihttps://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-90.pdf
dc.rightsIn Copyright
dc.titleHybrid vibration signal monitoring approach for rolling element bearings
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201912165309
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-2-87587-065-0
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange49-54
dc.type.versionpublishedVersion
dc.rights.copyright© The Authors, 2019
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceEuropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
dc.relation.grantnumber315550
dc.relation.grantnumber311877
dc.subject.ysovärähtelyt
dc.subject.ysokonetekniikka
dc.subject.ysokuluminen
dc.subject.ysosignaalianalyysi
dc.subject.ysokoneoppiminen
dc.subject.ysolaakerit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p708
jyx.subject.urihttp://www.yso.fi/onto/yso/p20255
jyx.subject.urihttp://www.yso.fi/onto/yso/p3084
jyx.subject.urihttp://www.yso.fi/onto/yso/p26805
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p10367
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundingprogramProfilointi, SAfi
jyx.fundinginformationThe work supported by the Academy of Finland from grants 311877 and 315550.
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright