dc.contributor.author | Rakesh, R. | |
dc.contributor.author | Salo, Mikko | |
dc.date.accessioned | 2019-12-10T13:22:17Z | |
dc.date.available | 2019-12-10T13:22:17Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Rakesh, R., & Salo, M. (2020). The fixed angle scattering problem and wave equation inverse problems with two measurements. <i>Inverse Problems</i>, <i>36</i>(3), Article 035005. <a href="https://doi.org/10.1088/1361-6420/ab23a2" target="_blank">https://doi.org/10.1088/1361-6420/ab23a2</a> | |
dc.identifier.other | CONVID_33720586 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/66712 | |
dc.description.abstract | We consider two formally determined inverse problems for the wave equation in more than one space dimension. Motivated by the fixed angle inverse scattering problem, we show that a compactly supported potential is uniquely determined by the far field pattern generated by plane waves coming from exactly two opposite directions. This implies that a reflection symmetric potential is uniquely determined by its fixed angle scattering data. We also prove a Lipschitz stability estimate for an associated problem. Motivated by the point source inverse problem in geophysics, we show that a compactly supported potential is
uniquely determined from boundary measurements of the waves generated by exactly two sources - a point source and an incoming spherical wave. These results are proved by using Carleman estimates and adapting the ideas introduced by Bukhgeim and Klibanov on the use of Carleman estimates for inverse problems. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Institute of Physics | |
dc.relation.ispartofseries | Inverse Problems | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.title | The fixed angle scattering problem and wave equation inverse problems with two measurements | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201912105180 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Inversio-ongelmien huippuyksikkö | fi |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Centre of Excellence in Inverse Problems | en |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0266-5611 | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 36 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2019 IOP Publishing Ltd | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 309963 | |
dc.relation.grantnumber | 770924 | |
dc.relation.grantnumber | 770924 | |
dc.relation.grantnumber | 284715 HY | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/770924/EU//IPTheoryUnified | |
dc.subject.yso | inversio-ongelmat | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27912 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1088/1361-6420/ab23a2 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | ERC Consolidator Grant | en |
jyx.fundingprogram | Centre of Excellence, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | ERC Consolidator Grant | fi |
jyx.fundingprogram | Huippuyksikkörahoitus, SA | fi |
jyx.fundinginformation | Suomen Akatemia 284715, 309963; European Commission 770924 | |
dc.type.okm | A1 | |