dc.contributor.author | Antonakis, John | |
dc.contributor.author | Bastardoz, Nicolas | |
dc.contributor.author | Rönkkö, Mikko | |
dc.date.accessioned | 2019-12-10T12:38:08Z | |
dc.date.available | 2019-12-10T12:38:08Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Antonakis, J., Bastardoz, N., & Rönkkö, M. (2021). On ignoring the random effects assumption in multilevel models : review, critique, and recommendations. <i>Organizational Research Methods</i>, <i>24</i>(2), 443-483. <a href="https://doi.org/10.1177/1094428119877457" target="_blank">https://doi.org/10.1177/1094428119877457</a> | |
dc.identifier.other | CONVID_33336409 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/66704 | |
dc.description.abstract | Entities such as individuals, teams, or organizations can vary systematically from one another.
Researchers typically model such data using multilevel models, assuming that the random effects
are uncorrelated with the regressors. Violating this testable assumption, which is often ignored,
creates an endogeneity problem thus preventing causal interpretations. Focusing on two-level
models, we explain how researchers can avoid this problem by including cluster means of the
Level 1 explanatory variables as controls; we explain this point conceptually and with a large
scale simulation. We further show why the common practice of centering the predictor variables
is mostly unnecessary. Moreover, to examine the state of the science, we reviewed 204 randomly
drawn articles from macro and micro organizational science and applied psychology journals,
finding that only 106 articles—with a slightly higher proportion from macro-oriented fields—
properly deal with the random effects assumption. Alarmingly, most models also failed on the
usual exogeneity requirement of the regressors, leaving only 25 mostly macro-level articles that
potentially reported trustworthy multilevel estimates. We offer a set of practical recommendations
for researchers to model multilevel data appropriately. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Sage Publications, Inc. | |
dc.relation.ispartofseries | Organizational Research Methods | |
dc.rights | In Copyright | |
dc.subject.other | random effects | |
dc.subject.other | fixed effects | |
dc.subject.other | multilevel | |
dc.subject.other | HLM | |
dc.subject.other | endogeneity | |
dc.subject.other | centering | |
dc.title | On ignoring the random effects assumption in multilevel models : review, critique, and recommendations | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201912105172 | |
dc.contributor.laitos | Kauppakorkeakoulu | fi |
dc.contributor.laitos | School of Business and Economics | en |
dc.contributor.oppiaine | Basic or discovery scholarship | fi |
dc.contributor.oppiaine | Johtaminen | fi |
dc.contributor.oppiaine | Basic or discovery scholarship | en |
dc.contributor.oppiaine | Management and Leadership | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_dcae04bc | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 443-483 | |
dc.relation.issn | 1094-4281 | |
dc.relation.numberinseries | 2 | |
dc.relation.volume | 24 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2019 SAGE | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 311309 | |
dc.subject.yso | tilastomenetelmät | |
dc.subject.yso | soveltava psykologia | |
dc.subject.yso | monitasoanalyysi | |
dc.subject.yso | organisaatiotutkimus | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3127 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13322 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p22676 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7816 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1177/1094428119877457 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundinginformation | This research was supported in part by a grant from the Academy of Finland (grant 311309) to
Mikko Rönkkö. We acknowledge the computational resources provided by the Aalto Science-IT
project. | |
dc.type.okm | A2 | |