Effective analytical-numerical methods for the study of regular and chaotic oscillations in dynamical systems
This dissertation examines the difficulties in analyzing the onset of oscillations in
the process of loss of stability in various nonlinear dynamical systems. The study
of the onset of oscillations originated with the discovery of periodic regimes in
automatic control systems, as well as with the discovery of chaos associated with
attempts to explain a laminar fluid flow becoming turbulent. One of the first
methods revealing and analyzing stability of periodic oscillations applied to automatic
control systems with one scalar nonlinearity was the Andronov pointmapping
method, which is applicable only to piecewise linear systems of low
order. Van der Pol, Krylov and Bogolyubov suggested the harmonic balance
method, which is applicable to systems of arbitrary dimension with scalar nonlinearity
of a general form. However, this method is approximate and may incorrectly
predict the loss of stability and existence of oscillations.
In this dissertation, for systems with one scalar nonlinearity, the discussion
of the classical harmonic balance and the point-mapping methods has been carried
out. Advantages and disadvantages of the locus of a perturbed relay system
(LPRS) method, which is an extension of the harmonic balance method, were discussed
and new examples demonstrating difficulties of studying scenarios of the
loss of stability and onset of oscillations in relay systems were presented.
None of the above mentioned methods are applicable when oscillations
emerging in the system after the loss of stability demonstrate complex chaotic
behavior. Such phenomenon was first noticed by famous scientist Lorenz in the
study of turbulent convection of a fluid layer. One of the first explanations to the
birth of such oscillations was given via a homoclinic bifurcation, in which a homoclinic
oscillation appears in the phase space. In general, proving the existence
of a homoclinic oscillation and giving a full description of the loss of stability and
the onset of chaos via a homoclinic bifurcation remain open challenges.
In this dissertation, for a class of Lorenz-like systems, the conditions of the
existence of a homoclinic oscillation have been analytically obtained and a numerical
investigation of several new homoclinic bifurcation scenarios have been
carried out. For the Lorenz system, to visualize unstable periodic oscillations,
which may appear during homoclinic bifurcations and are embedded in chaotic
attractor, the Pyragas control algorithm has been implemented.
Keywords: global stability, periodic and homoclinic oscillations, chaos
...
Työssä kehitetään uusia menetelmiä dynaamisten systeemien värähtelyjen tutkimiseen.
Tutkimusalueen juuret ovat yhtäältä automaattisten ohjausjärjestelmien
analyysissä ja toisaalta virtausten turbulenssin syntymekanismeissa. Vanhimpia
metodeja ovat Andronovin pistemenetelmä, joka soveltuu paloittain lineaaristen
ohjausjärjestelmien toimintapisteiden ja stabiiliuden tutkimiseen, sekä harmonisen
tasapainon menetelmä (Van der Pol, Krylov, Bogolyubov), joka soveltuu yleisille
systeemeille, joissa on yksi epälineaarinen elementti. Menetelmä ei kuitenkaan
ole tarkka, vaan voi antaa vääriä ennusteita systeemin stabiiliudesta.
Tässä työssä vertaillaan yhden epälineaarisuuden sisältäville systeemeille
em. menetelmiä sekä pistemenetelmän laajennusta, LPRS-menetelmää (Locus of
Perturbed Relay System). Osoittautui, että menetelmät täydentävät toisiaan aidosti
ja eri menetelmien avulla voitiin löytää uusia, ennen tuntemattomia esimerkkejä
piilevistä kaoottisista värähtelijöistä.
Monimutkaisemmille systeemeille, joissa on useampi epälineaarinen komponentti
ja värähtely on kaoottista, edelliset menetelmät eivät ole riittäviä. Kaoottisille
värähtelyille on monta syntymekanismia, joista tunnetuin on niin sanottu
homokliininen bifurkaatio, jossa tasapainossa olevaan järjestelmään syntyy toimintapisteen
muuttuessa spontaanisti periodinen värähtely. Tämän ilmiön löysi
meteorologi Lorenz tutkiessaan turbulenssin syntyä ilmakehässä.
Yleisessä tapauksessa kysymys siitä, voiko systeemiin syntyä homokliininen
värähtely ja voiko systeemi siirtyä tätä kautta kaoottisen värähtelyn tilaan,
on avoin.
Tässä työssä on johdettu joukolle Lorenzin mallin kaltaisia systeemejä ehdot,
joiden vallitessa niissä esiintyy homokliininen värähtely. Tämä on mahdollistanut
useiden uusien bifurkaatioskenaarioiden numeerisen tarkastelun. Osana
numeerista tarkastelua on toteutettu Pyragasin säätöalgoritmi, jonka avulla voidaan
visualisoida kaoottisen värähtelyn sisään piiloutuneita, epästabiileja, periodisia
värähtelyjä.
Avainsanat: globaali stabiilius, periodisia ja homokliiniset värähtelyt, kaaos
...




ISBN
978-951-39-7989-8ISSN Search the Publication Forum
2489-9003Contains publications
- Artikkeli I: G.A. Leonov, N.V. Kuznetsov, M.A. Kiseleva, R.N. Mokaev. (2017). Global Problems for Differential Inclusions. Kalman and Vyshnegradskii Problems and Chua Circuits. Differential Equations, Vol. 53 (13), 1671–1702. DOI: 10.1134/S0012266117130018
- Artikkeli II: E.D. Akimova, I.M. Boiko, N.V. Kuznetsov, R.N. Mokaev (2019). Analysis of oscillations in discontinuous Lurie systems via LPRS method. Vibroengineering PROCEDIA, Vol. 25, PP. 177–181. DOI: 10.21595/vp.2019.20817
- Artikkeli III: N.V. Kuznetsov, O.A. Kuznetsova, D.V. Koznov, R.N. Mokaev, B.R.Andrievsky (2018). Counterexamples to the Kalman Conjectures. IFAC-PapersOnLine 51,I.33, 138–143. DOI: 10.1016/j.ifacol.2018.12.107
- Artikkeli IV: N.V. Kuznetsov, O.A. Kuznetsova, T.N. Mokaev, R.N. Mokaev, M.V. Yul-dashev, R.V. Yuldashev (2019). Coexistence of hidden attractors and multistability in counterexamples to the Kalman conjecture. Proceedings of the11thIFAC Symposium on Nonlinear Control Systems. Accepted to IFAC-PapersOnLine. DOI: 10.1016/j.ifacol.2019.11.747
- Artikkeli V:E.V. Kudryashova; E.V., Kuznetsov; N.V., Kuznetsova; O.A., Leonov; G.A.,Mokaev; R.N. (2019). Harmonic Balance Method and Stability of Discontinuous Systems. In Matveenko V., Krommer M., Belyaev A., Irschik H. (eds) Dynamicsand Control of Advanced Structures and Machines. Springer, Cham, 99–107. DOI: 10.1007/978-3-319-90884-7_11
- Artikkeli VI: N.V. Kuznetsov, T.N. Mokaev, E.V. Kudryashova, O.A. Kuznetsova, R.N.Mokaev, M.V. Yuldashev, R.V. Yuldashev (2020). Stability and Chaotic Attractors of Memristor-Based Circuit with a Line of Equilibria. Lecture Notes in Electrical Engineering, 639–644. DOI: 10.1007/978-3-030-14907-9_62
- Artikkeli VII: G.A. Leonov, R.N. Mokaev, N.V. Kuznetsov, T.N. Mokaev (2020). Homoclinic Bifurcations and Chaos in the Fishing Principle for the Lorenz-like Systems. International Journal of Bifurcation and Chaos, Vol. 30. DOI: 10.1142/S0218127420501242
- Artikkeli VIII: N.V. Kuznetsov, T.N. Mokaev, R.N. Mokaev, O.A. Kuznetsova, E.V. Kudryashova (2019). A lower-bound estimate of the Lyapunov dimension for the global attractor of the Lorenz system. Preprint. Arxiv:1910.08740
Keywords
Metadata
Show full item recordCollections
- JYU Dissertations [694]
- Väitöskirjat [3299]
Related items
Showing items with similar title or keywords.
-
Numerical analysis of dynamical systems : unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension
Kuznetsov, Nikolay; Mokaev, Timur (IOP Publishing, 2019)In this article, on the example of the known low-order dynamical models, namely Lorenz, Rössler and Vallis systems, the difficulties of reliable numerical analysis of chaotic dynamical systems are discussed. For the Lorenz ... -
The Lorenz system : hidden boundary of practical stability and the Lyapunov dimension
Kuznetsov, N. V.; Mokaev, T. N.; Kuznetsova, O. A.; Kudryashova, E. V. (Springer, 2020)On the example of the famous Lorenz system, the difficulties and opportunities of reliable numerical analysis of chaotic dynamical systems are discussed in this article. For the Lorenz system, the boundaries of global ... -
An analytical-numerical study of dynamic stability of an axially moving elastic web
Banichuk, Nikolay; Barsuk, Alexander; Neittaanmäki, Pekka; Jeronen, Juha; Tuovinen, Tero (Jyväskylän yliopisto, 2015)This paper is devoted to a dynamic stability analysis of an axially moving elastic web, modelled as a panel (a plate undergoing cylindrical deformation). The results are directly applicable also to the travelling beam. ... -
Time-delay control for stabilization of the Shapovalov mid-size firm model
Alexeeva, T.A.; Barnett, W.A.; Kuznetsov, N.V.; Mokaev, T.N. (Elsevier, 2020)Control and stabilization of irregular and unstable behavior of dynamic systems (including chaotic processes) are interdisciplinary problems of interest to a variety of scientific fields and applications. Using the control ... -
Analytical-numerical analysis of closed-form dynamic model of Sayano-Shushenskaya hydropower plant : stability, oscillations, and accident
Kuznetsov, N.V.; Yuldashev, M.V.; Yuldashev, R.V. (Elsevier, 2021)This work is devoted to the analysis of a mathematical model of hydropower unit, consisting of synchronous generator, hydraulic turbine, and speed governor. It is motivated by the accident happened on the Sayano-Shushenskaya ...