dc.contributor.author | Boguslavski, K. | |
dc.contributor.author | Kurkela, A. | |
dc.contributor.author | Lappi, T. | |
dc.contributor.author | Peuron, J. | |
dc.date.accessioned | 2019-11-26T09:46:40Z | |
dc.date.available | 2019-11-26T09:46:40Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Boguslavski, K., Kurkela, A., Lappi, T., & Peuron, J. (2019). Highly occupied gauge theories in 2 + 1 dimensions : a self-similar attractor. <i>Physical Review D</i>, <i>100</i>(9), Article 094022. <a href="https://doi.org/10.1103/PhysRevD.100.094022" target="_blank">https://doi.org/10.1103/PhysRevD.100.094022</a> | |
dc.identifier.other | CONVID_33616014 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/66519 | |
dc.description.abstract | Motivated by the boost-invariant Glasma state in the initial stages in heavy-ion collisions, we perform classical-statistical simulations of SU(2) gauge theory in 2+1 dimensional space-time both with and without a scalar field in the adjoint representation. We show that irrespective of the details of the initial condition, the far-from-equilibrium evolution of these highly occupied systems approaches a unique universal attractor at high momenta that is the same for the gauge and scalar sectors. We extract the scaling exponents and the form of the distribution function close to this nonthermal fixed point. We find that the dynamics are governed by an energy cascade to higher momenta with scaling exponents α=3β and β=−1/5. We argue that these values can be obtained from parametric estimates within kinetic theory indicating the dominance of small momentum transfer in the scattering processes. We also extract the Debye mass nonperturbatively from a longitudinally polarized correlator and observe an IR enhancement of the scalar correlation function for low momenta below the Debye mass. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.ispartofseries | Physical Review D | |
dc.rights | CC BY 4.0 | |
dc.subject.other | finite temperature field theory | |
dc.subject.other | quantum chromodynamics | |
dc.subject.other | quark-gluon plasma | |
dc.subject.other | relativistic heavy-ion collisions | |
dc.title | Highly occupied gauge theories in 2 + 1 dimensions : a self-similar attractor | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201911265007 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2470-0010 | |
dc.relation.numberinseries | 9 | |
dc.relation.volume | 100 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Authors, 2019 | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 681707 | |
dc.relation.grantnumber | 681707 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/681707/EU//CGCglasmaQGP | |
dc.subject.yso | hiukkasfysiikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15576 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1103/PhysRevD.100.094022 | |
dc.relation.funder | European Commission | en |
dc.relation.funder | Euroopan komissio | fi |
jyx.fundingprogram | ERC European Research Council, H2020 | en |
jyx.fundingprogram | ERC European Research Council, H2020 | fi |
jyx.fundinginformation | This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant No. ERC-2015-CoG681707). The content of this article does not reflect the official opinion of the European Union and responsibility for the information and views expressed therein lies entirely with the authors. K. B. and J. P. would like to thank the CERN Theory group for hospitality during part of this work. The authors wish to acknowledge CSC—IT Center for Science, Finland, for computational resources. | |
dc.type.okm | A1 | |