Show simple item record

dc.contributor.authorVan Cann, Joannes
dc.contributor.authorKoskela, Esa
dc.contributor.authorMappes, Tapio
dc.contributor.authorSims, Angela
dc.contributor.authorWatts, Phillip
dc.date.accessioned2019-10-01T10:44:54Z
dc.date.available2020-06-07T21:35:14Z
dc.date.issued2019fi
dc.identifier.citationVan Cann, J., Koskela, E., Mappes, T., Sims, A., & Watts, P. (2019). Intergenerational fitness effects of the early life environment in a wild rodent. <em>Journal of Animal Ecology</em>, 88 (9), 1355-1365. <a href="https://doi.org/10.1111/1365-2656.13039">doi:10.1111/1365-2656.13039</a>fi
dc.identifier.otherTUTKAID_81604
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65697
dc.description.abstractThe early life environment can have profound, long‐lasting effects on an individual's fitness. For example, early life quality might (a) positively associate with fitness (a silver spoon effect), (b) stimulate a predictive adaptive response (by adjusting the phenotype to the quality of the environment to maximize fitness) or (c) be obscured by subsequent plasticity. Potentially, the effects of the early life environment can persist beyond one generation, though the intergenerational plasticity on fitness traits of a subsequent generation is unclear. To study both intra‐ and intergenerational effects of the early life environment, we exposed a first generation of bank voles to two early life stimuli (variation in food and social environment) in a controlled environment. To assess possible intra‐generational effects, the reproductive success of female individuals was investigated by placing them in large outdoor enclosures in two different, ecologically relevant environments (population densities). Resulting offspring were raised in the same population densities where they were conceived and their growth was recorded. When adult, half of the offspring were transferred to opposite population densities to evaluate their winter survival, a crucial fitness trait for bank voles. Our setup allowed us to assess: (a) do early life population density cues elicit an intra‐generational adaptive response, that is a higher reproductive success when the density matches the early life cues and (b) can early life stimuli of one generation elicit an intergenerational adaptive response in their offspring, that is a higher growth and winter survival when the density matches the early life cues of their mother. Our results show that the early life environment directly affects the phenotype and reproductive success of the focal generation, but adaptive responses are only evident in the offspring. Growth of the offspring is maintained only when the environment matches their mother's early life environment. Furthermore, winter survival of offspring also tended to be higher in high population densities if their mothers experienced an competitive early life. These results show that the early life environment can contribute to maintain high fitness in challenging environments, but not necessarily in the generation experiencing the early life cues.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley-Blackwell Publishing Ltd.
dc.relation.ispartofseriesJournal of Animal Ecology
dc.rightsIn Copyright
dc.subject.otherkuntofi
dc.subject.otherfenotyyppifi
dc.subject.otherympäristötekijätfi
dc.subject.othersopeutuminenfi
dc.subject.otherpopulaatiodynamiikkafi
dc.subject.othermetsämyyräfi
dc.subject.otherearly lifefi
dc.subject.otherintergenerational plasticityfi
dc.subject.othermaternal effectfi
dc.subject.otherpopulation densityfi
dc.subject.otherpredictive adaptive responsefi
dc.subject.otherprotein restrictionfi
dc.subject.othersilver spoonfi
dc.subject.othersocial environmentfi
dc.titleIntergenerational fitness effects of the early life environment in a wild rodentfi
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201909104078
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosThe Department of Biological and Environmental Scienceen
dc.contributor.oppiaineEkologia ja evoluutiobiologia
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-09-10T09:15:14Z
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1355-1365
dc.relation.issn0021-8790
dc.relation.numberinseries9
dc.relation.volume88
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 The Authors. Journal of Animal Ecology and British Ecological Society
dc.rights.accesslevelopenAccessfi
dc.format.contentfulltext
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1111/1365-2656.13039


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright