Näytä suppeat kuvailutiedot

dc.contributor.authorVan Cann, Joannes
dc.contributor.authorKoskela, Esa
dc.contributor.authorMappes, Tapio
dc.contributor.authorSims, Angela
dc.contributor.authorWatts, Phillip
dc.date.accessioned2019-10-01T10:44:54Z
dc.date.available2020-06-07T21:35:14Z
dc.date.issued2019
dc.identifier.citationVan Cann, J., Koskela, E., Mappes, T., Sims, A., & Watts, P. (2019). Intergenerational fitness effects of the early life environment in a wild rodent. <i>Journal of Animal Ecology</i>, <i>88</i>(9), 1355-1365. <a href="https://doi.org/10.1111/1365-2656.13039" target="_blank">https://doi.org/10.1111/1365-2656.13039</a>
dc.identifier.otherCONVID_30885348
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65697
dc.description.abstractThe early life environment can have profound, long‐lasting effects on an individual's fitness. For example, early life quality might (a) positively associate with fitness (a silver spoon effect), (b) stimulate a predictive adaptive response (by adjusting the phenotype to the quality of the environment to maximize fitness) or (c) be obscured by subsequent plasticity. Potentially, the effects of the early life environment can persist beyond one generation, though the intergenerational plasticity on fitness traits of a subsequent generation is unclear. To study both intra‐ and intergenerational effects of the early life environment, we exposed a first generation of bank voles to two early life stimuli (variation in food and social environment) in a controlled environment. To assess possible intra‐generational effects, the reproductive success of female individuals was investigated by placing them in large outdoor enclosures in two different, ecologically relevant environments (population densities). Resulting offspring were raised in the same population densities where they were conceived and their growth was recorded. When adult, half of the offspring were transferred to opposite population densities to evaluate their winter survival, a crucial fitness trait for bank voles. Our setup allowed us to assess: (a) do early life population density cues elicit an intra‐generational adaptive response, that is a higher reproductive success when the density matches the early life cues and (b) can early life stimuli of one generation elicit an intergenerational adaptive response in their offspring, that is a higher growth and winter survival when the density matches the early life cues of their mother. Our results show that the early life environment directly affects the phenotype and reproductive success of the focal generation, but adaptive responses are only evident in the offspring. Growth of the offspring is maintained only when the environment matches their mother's early life environment. Furthermore, winter survival of offspring also tended to be higher in high population densities if their mothers experienced an competitive early life. These results show that the early life environment can contribute to maintain high fitness in challenging environments, but not necessarily in the generation experiencing the early life cues.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley-Blackwell Publishing Ltd.
dc.relation.ispartofseriesJournal of Animal Ecology
dc.rightsIn Copyright
dc.subject.otherearly life
dc.subject.otherintergenerational plasticity
dc.subject.othermaternal effect
dc.subject.otherpredictive adaptive response
dc.subject.otherprotein restriction
dc.subject.othersilver spoon
dc.titleIntergenerational fitness effects of the early life environment in a wild rodent
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201909104078
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineEkologia ja evoluutiobiologiafi
dc.contributor.oppiaineEcology and Evolutionary Biologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-09-10T09:15:14Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1355-1365
dc.relation.issn0021-8790
dc.relation.numberinseries9
dc.relation.volume88
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 The Authors. Journal of Animal Ecology and British Ecological Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysofenotyyppi
dc.subject.ysosopeutuminen
dc.subject.ysokunto
dc.subject.ysopopulaatiodynamiikka
dc.subject.ysometsämyyrä
dc.subject.ysososiaalinen ympäristö
dc.subject.ysoasukastiheys
dc.subject.ysoympäristötekijät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13074
jyx.subject.urihttp://www.yso.fi/onto/yso/p6137
jyx.subject.urihttp://www.yso.fi/onto/yso/p7383
jyx.subject.urihttp://www.yso.fi/onto/yso/p23558
jyx.subject.urihttp://www.yso.fi/onto/yso/p513
jyx.subject.urihttp://www.yso.fi/onto/yso/p4836
jyx.subject.urihttp://www.yso.fi/onto/yso/p13014
jyx.subject.urihttp://www.yso.fi/onto/yso/p6194
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1111/1365-2656.13039
jyx.fundinginformationWe would like to thank the animal care staff at the University of Jyväskylä and at the Konnevesi research station. This work was supported by the Academy of Finland and the University of Jyväskylä Graduate School. Use of study animals followed the ethical guidelines for animal research in Finland and all institutional guidelines and was conducted under permissions from the National Animal Experiment Board (ESAVI/7256/04.10.07/2014).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright