Show simple item record

dc.contributor.authorIlett, Michael J.
dc.contributor.authorRantalainen, Timo
dc.contributor.authorKeske, Michelle A.
dc.contributor.authorMay, Anthony K.
dc.contributor.authorWarmington, Stuart A.
dc.date.accessioned2019-09-03T11:28:46Z
dc.date.available2019-09-03T11:28:46Z
dc.date.issued2019
dc.identifier.citationIlett, M. J., Rantalainen, T., Keske, M. A., May, A. K., & Warmington, S. A. (2019). The effects of restriction pressures on the acute responses to blood flow restriction exercise. <i>Frontiers in Physiology</i>, <i>10</i>, Article 1018. <a href="https://doi.org/10.3389/fphys.2019.01018" target="_blank">https://doi.org/10.3389/fphys.2019.01018</a>
dc.identifier.otherCONVID_32686063
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65406
dc.description.abstractPurpose: No current guidelines or recommendations exist informing the selection of restriction pressure during blood flow restriction exercise (BFRE). Moreover, the effects of specific relative restriction pressures on the acute muscle, metabolic and cardiopulmonary responses to BFRE are unclear. The purpose of this study was to characterize these acute responses at different levels of restriction pressure. Methods: Participants (n = 10) completed rhythmic isometric knee extension exercise across five experimental trials in a balanced randomized order. Three were BFRE trials {B-40 [restriction pressure set to 40% LOP (total limb occlusion pressure)]; B-60 (60% LOP); and B-80 (80% LOP)) with a workload equivalent to 20% maximal voluntary force (MVC), one was non-BFRE at 20% MVC (LL) and one was non-BFRE at 80% MVC (HL). Measurements recorded were torque, muscle activity via electromyography (EMG), tissue oxygenation via near infrared spectroscopy, whole body oxygen consumption, blood lactate and heart rate. Results: For the LL and B-40 trials, most measures remained constant. However, for the B-60 and B-80 trials, significant fatigue was demonstrated by a reduction in MVC torque across the trial (p < 0.05). Blood lactate increased from baseline in HL, B-60, and B-80 (p < 0.05). Submaximal EMG was greater in B-60 and B-80 than LL, but lower compared with HL (p < 0.05). Tissue oxygenation decreased in HL, B-40, B-60, and B-80 (p < 0.05), which was lower in the B-80 trial compared to all other trials (p < 0.01). Whole body oxygen consumption was not different between the BFRE trials (p > 0.05). Conclusion: We demonstrate graded/progressive acute responses with increasing applied pressure during BFRE, from which we speculate that an effective minimum "threshold" around 60% LOP may be necessary for BFRE to be effective with training. While these data provide some insight on the possible mechanisms by which BFRE develops skeletal muscle size and strength when undertaken chronically across a training program, the outcomes of chronic training programs using different levels of applied restriction pressures remain to be tested. Overall, the present study recommends 60-80% LOP as a suitable "minimum" BFRE pressure.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.ispartofseriesFrontiers in Physiology
dc.rightsCC BY 4.0
dc.subject.otherKaatsu
dc.subject.otherblood flow restriction
dc.subject.othermuscle fatigue
dc.subject.otherEMG
dc.subject.otherlimb occlusion pressure
dc.subject.otherrestriction pressure
dc.titleThe effects of restriction pressures on the acute responses to blood flow restriction exercise
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201909034012
dc.contributor.laitosLiikuntatieteellinen tiedekuntafi
dc.contributor.laitosFaculty of Sport and Health Sciencesen
dc.contributor.oppiaineBiomekaniikkafi
dc.contributor.oppiaineGerontologian tutkimuskeskusfi
dc.contributor.oppiaineHyvinvoinnin tutkimuksen yhteisöfi
dc.contributor.oppiaineBiomechanicsen
dc.contributor.oppiaineGerontology Research Centeren
dc.contributor.oppiaineSchool of Wellbeingen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1664-042X
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 The Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysolihasvoima
dc.subject.ysolihasmassa
dc.subject.ysoelektromyografia
dc.subject.ysovoimaharjoittelu
dc.subject.ysoverenkierto
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p23362
jyx.subject.urihttp://www.yso.fi/onto/yso/p29135
jyx.subject.urihttp://www.yso.fi/onto/yso/p22356
jyx.subject.urihttp://www.yso.fi/onto/yso/p16233
jyx.subject.urihttp://www.yso.fi/onto/yso/p16243
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3389/fphys.2019.01018
jyx.fundinginformationThis research was supported by funds made available by the School of Exercise and Nutrition Sciences, Deakin University.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0