Secrecy analysis and learning-based optimization of cooperative NOMA SWIPT systems
Jameel, F., Khan, W. U., Chang, Z., Ristaniemi, T., & Liu, J. (2019). Secrecy analysis and learning-based optimization of cooperative NOMA SWIPT systems. In 2019 IEEE International Conference on Communications Workshops (ICC Workshops 2019). IEEE. IEEE International Conference on Communications. https://doi.org/10.1109/ICCW.2019.8756894
Julkaistu sarjassa
IEEE International Conference on CommunicationsPäivämäärä
2019Tekijänoikeudet
©2019 IEEE
Non-orthogonal multiple access (NOMA) is considered to be one of the best candidates for future networks due to its ability to serve multiple users using the same resource block. Although early studies have focused on transmission reliability and energy efficiency, recent works are considering cooperation among the nodes. The cooperative NOMA techniques allow the user with a better channel (near user) to act as a relay between the source and the user experiencing poor channel (far user). This paper considers the link security aspect of energy harvesting cooperative NOMA users. In particular, the near user applies the decode-and-forward (DF) protocol for relaying the message of the source node to the far user in the presence of an eavesdropper. Moreover, we consider that all the devices use power-splitting architecture for energy harvesting and information decoding. We derive the analytical expression of intercept probability. Next, we employ deep learning based optimization to find the optimal power allocation factor. The results show the robustness and superiority of deep learning optimization over conventional iterative search algorithm.
...
Julkaisija
IEEEEmojulkaisun ISBN
978-1-72812-373-8Konferenssi
IEEE International Conference on Communications WorkshopsKuuluu julkaisuun
2019 IEEE International Conference on Communications Workshops (ICC Workshops 2019)ISSN Hae Julkaisufoorumista
1550-3607Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/32505025
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work is partially supported by the National Key R & D Plan (2017YFC0803403), the National Natural Science Foundation of China (61371188) and the Fundamental Research Funds of Shandong University (2018GN051).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Advanced voice and data solutions for evolution of cellular network system
Chen, Tao (University of Jyväskylä, 2014) -
Adapting to Dynamic LEO-B5G Systems : Meta-Critic Learning Based Efficient Resource Scheduling
Yuan, Yaxiong; Lei, Lei; Vu, Thang X.; Chang, Zheng; Chatzinotas, Symeon; Sun, Sumei (Institute of Electrical and Electronics Engineers (IEEE), 2022)Low earth orbit (LEO) satellite-assisted communications have been considered as one of the key elements in beyond 5G systems to provide wide coverage and cost-efficient data services. Such dynamic space-terrestrial topologies ... -
Efficient power allocation for multi-cell uplink NOMA network
Khan, Wali Ullah; Jameel, Furqan; Ristaniemi, Tapani; Elhalawany, Basem M.; Liu, Ju (IEEE, 2019)Digital technologies are rapidly shaping the modern concepts of urbanization. It is a key element of developing practical smart cities of the future. In fact, they are the catalyst for the increasing networking of all areas ... -
Cooperative spectrum sensing schemes for future dynamic spectrum access infrastructures
Abdi Mahmoudaliloo, Younes (University of Jyväskylä, 2016) -
Joint Spectral and Energy Efficiency Optimization for Downlink NOMA Networks
Khan, Wali Ullah; Jameel, Furqan; Ristaniemi, Tapani; Khan, Shafiullah; Sidhu, Guftaar Ahmad Sardar; Liu, Ju (Institute of Electrical and Electronics Engineers, 2020)Non-orthogonal multiple access (NOMA) holds the promise to be a key enabler of 5G communication. However, the existing design of NOMA systems must be optimized to achieve maximum rate while using minimum transmit power. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.