Näytä suppeat kuvailutiedot

dc.contributor.authorAsghar, Muhammad Zeeshan
dc.contributor.authorAbbas, Mudassar
dc.contributor.authorZeeshan, Khaula
dc.contributor.authorKotilainen, Pyry
dc.contributor.authorHämäläinen, Timo
dc.date.accessioned2019-07-31T04:42:18Z
dc.date.available2019-07-31T04:42:18Z
dc.date.issued2019
dc.identifier.citationAsghar, M. Z., Abbas, M., Zeeshan, K., Kotilainen, P., & Hämäläinen, T. (2019). Assessment of Deep Learning Methodology for Self-Organizing 5G Networks. <i>Applied Sciences</i>, <i>9</i>(15), Article 2975. <a href="https://doi.org/10.3390/app9152975" target="_blank">https://doi.org/10.3390/app9152975</a>
dc.identifier.otherCONVID_32177287
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65169
dc.description.abstractIn this paper, we present an auto-encoder-based machine learning framework for self organizing networks (SON). Traditional machine learning approaches, for example, K Nearest Neighbor, lack the ability to be precisely predictive. Therefore, they can not be extended for sequential data in the true sense because they require a batch of data to be trained on. In this work, we explore artificial neural network-based approaches like the autoencoders (AE) and propose a framework. The proposed framework provides an advantage over traditional machine learning approaches in terms of accuracy and the capability to be extended with other methods. The paper provides an assessment of the application of autoencoders (AE) for cell outage detection. First, we briefly introduce deep learning (DL) and also shed light on why it is a promising technique to make self organizing networks intelligent, cognitive, and intuitive so that they behave as fully self-configured, self-optimized, and self-healed cellular networks. The concept of SON is then explained with applications of intrusion detection and mobility load balancing. Our empirical study presents a framework for cell outage detection based on an autoencoder using simulated data obtained from a SON simulator. Finally, we provide a comparative analysis of the proposed framework with the existing frameworks.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesApplied Sciences
dc.rightsCC BY 4.0
dc.subject.other5G-tekniikka
dc.subject.otherdeep learning
dc.subject.otherself-organizing networks
dc.subject.other5G
dc.subject.otherautoencoder
dc.subject.othermobility load balancing
dc.subject.othercell outage detection
dc.subject.otherintrusion detection
dc.titleAssessment of Deep Learning Methodology for Self-Organizing 5G Networks
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201907313730
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2076-3417
dc.relation.numberinseries15
dc.relation.volume9
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 by the authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber1916/31/2017
dc.format.contentfulltext
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/app9152975
dc.relation.funderTEKESfi
dc.relation.funderTEKESen
jyx.fundingprogramTUTL Tutkimusideoista uutta tietoa ja liiketoimintaa, TEKESfi
jyx.fundingprogramTUTL New knowledge and business from research ideas, TEKESen
jyx.fundinginformationThis work is supported by BusinessFinland under the grant no. 1916/31/2017.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0