Morphological, molecular and hormonal adaptations to early morning versus afternoon resistance training
Sedliak, M., Zeman, M., Buzgó, G., Cvecka, J., Hamar, D., Laczo, E., Okuliarova, M., Vanderka, M., Kampmiller, T., Häkkinen, K., Ahtiainen, J., Hulmi, J., Nilsen, T. S., Wiig, H., & Raastad, T. (2018). Morphological, molecular and hormonal adaptations to early morning versus afternoon resistance training. Chronobiology International, 35(4), 450-464. https://doi.org/10.1080/07420528.2017.1411360
Julkaistu sarjassa
Chronobiology InternationalTekijät
Päivämäärä
2018Oppiaine
LiikuntafysiologiaValmennus- ja testausoppiExercise PhysiologyScience of Sport Coaching and Fitness TestingTekijänoikeudet
© Taylor & Francis, 2018.
It has been clearly established that maximal force and power is lower in the morning compared to noon or afternoon hours. This morning neuromuscular deficit can be diminished by regularly training in the morning hours. However, there is limited and contradictory information upon hypertrophic adaptations to time-of-day-specific resistance training. Moreover, no cellular or molecular mechanisms related to muscle hypertrophy adaptation have been studied with this respect. Therefore, the present study examined effects of the time-of-day-specific resistance training on muscle hypertrophy, phosphorylation of selected proteins, hormonal concentrations and neuromuscular performance. Twenty five previously untrained males were randomly divided into a morning group (n = 11, age 23 ± 2 yrs), afternoon group (n = 7, 24 ± 4 yrs) and control group (n = 7, 24 ± 3 yrs). Both the morning and afternoon group underwent hypertrophy-type of resistance training with 22 training sessions over an 11-week period performed between 07:30–08:30 h and 16:00–17:00 h, respectively. Isometric MVC was tested before and immediately after an acute loading exclusively during their training times before and after the training period. Before acute loadings, resting blood samples were drawn and analysed for plasma testosterone and cortisol. At each testing occasion, muscle biopsies from m. vastus lateralis were obtained before and 60 min after the acute loading. Muscle specimens were analysed for muscle fibre cross-sectional areas (CSA) and for phosphorylated p70S6K, rpS6, p38MAPK, Erk1/2, and eEF2. In addition, the right quadriceps femoris was scanned with MRI before and after the training period. The control group underwent the same testing, except for MRI, between 11:00 h and 13:00 h but did not train. Voluntary muscle strength increased significantly in both the morning and afternoon training group by 16.9% and 15.2 %, respectively. Also muscle hypertrophy occurred by 8.8% and 11.9% (MRI, p < 0.001) and at muscle fibre CSA level by 21% and 18% (p < 0.01) in the morning and afternoon group, respectively. No significant changes were found in controls within these parameters. Both pre- and post-training acute loadings induced a significant (p < 0.001) reduction in muscle strength in all groups, not affected by time of day or training. The post-loading phosphorylation of p70S6Thr421/Ser424 increased independent of the time of day in the pre-training condition, whereas it was significantly increased in the morning group only after the training period (p < 0.05). Phosphorylation of rpS6 and p38MAPK increased acutely both before and after training in a time-of-day independent manner (p < 0.05 at all occasions). Phosphorylation of p70S6Thr389, eEF2 and Erk1/2 did not change at any time point. No statistically significant correlations were found between changes in muscle fibre CSA, MRI and cell signalling data. Resting testosterone was not statistically different among groups at any time point. Resting cortisol declined significantly from pre- to post-training in all three groups (p < 0.05). In conclusion, similar levels of muscle strength and hypertrophy could be achieved regardless of time of the day in previously untrained men. However, at the level of skeletal muscle signalling, the extent of adaptation in some parameters may be time of day dependent.
...
Julkaisija
Taylor & FrancisISSN Hae Julkaisufoorumista
0742-0528Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27808072
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Liikuntatieteiden tiedekunta [3139]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise
Wackerhage, Henning; Schoenfeld, Brad J.; Hamilton, D. Lee; Lehti, Maarit; Hulmi, Juha (American Physiological Society, 2019)One of the most striking adaptations to exercise is the skeletal muscle hypertrophy that occurs in response to resistance exercise. A large body of work shows that a mammalian target of rapamycin complex 1 (mTORC1)-mediated ... -
Acute neuromuscular and hormonal responses and long-term adaptations to hypertrophic resistance training : with special reference to constant versus variable resistance
Walker, Simon (University of Jyväskylä, 2012) -
Neuromuscular, hormonal and molecular responses to heavy resistance training in strength trained men : with special reference to various resistance exercise protocols, serum hormones and gene expression of androgen receptor and insulin-like growth factor-I
Ahtiainen, Juha (University of Jyväskylä, 2006)The present study was designed to obtain more information on mechanisms leading to muscle hypertrophy by determination of the effects of different heavy resistance exercise protocols on acute and chronic neuromuscular and ... -
Molecular and hormonal responses and adaptation to resistance and protein nutrition in young and older men
Hulmi, Juha (University of Jyväskylä, 2009)The aim of the present study was to investigate the mechanisms leading to muscle hypertrophy in humans by studying local muscle molecular and systemic hormonal responses to a single bout of heavy resistance exercise (RE) ... -
Big vs powerful : molecular signalling responses to hypertrophic and power resistance exercise modalities
Loh, Roland (2015)Introduction: The effects of resistance exercise (RE) loading on molecular signalling proteins, including those involved in protein translation and thus skeletal muscle hypertrophy have been extensively studied. However, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.